Cho\(x,y\in Z\). Giải pt
\(\sqrt{x}+\sqrt{y}=\sqrt{2016}\)
Giải pt:
\(\frac{\sqrt{x-2014}-1}{x-2014}+\frac{\sqrt{y-2015}-1}{y-2015}+\frac{\sqrt{z-2016}-1}{z-2016}=\frac{3}{4}\)
Đặt \(\sqrt{x-2014}=a;\sqrt{y-2015}=b;\sqrt{z=2016}=c\)(với a,b,c>0). Khi đó pt trở thành:
\(\frac{a-1}{a^2}+\frac{b-1}{b^2}+\frac{c-1}{c^2}=\frac{3}{4}\)\(\Leftrightarrow\left(\frac{1}{4}-\frac{1}{a}+\frac{1}{a^2}\right)+\left(\frac{1}{4}-\frac{1}{b}+\frac{1}{b^2}\right)+\left(\frac{1}{4}-\frac{1}{c}+\frac{1}{c^2}\right)=0\)
\(\Leftrightarrow\left(\frac{1}{2}-\frac{1}{a}\right)^2+\left(\frac{1}{2}-\frac{1}{b}\right)^2+\left(\frac{1}{2}-\frac{1}{c}\right)^2=0\Leftrightarrow a=b=c=2\)
\(\Rightarrow x=2018;y=2019;z=2020\)
\(\frac{\sqrt{x-2014}-1}{x-2014}+\frac{\sqrt{y-2015}-1}{y-2015}+\frac{\sqrt{z-2016}-1}{z-2016}=\frac{3}{4}\)
\(\frac{\sqrt{x-2014}}{x-2014}+\frac{\sqrt{y-2015}}{y-2015}+\frac{\sqrt{z-2016}}{z-2016}-\left(\frac{1}{x-2014+y-2015+z-2016}\right)=\frac{3}{4}\)
\(\frac{\sqrt{x-2014}}{x-2014}+\frac{\sqrt{y-2015}}{y-2015}+\frac{\sqrt{z-2016}}{z-2016}+0=\frac{3}{4}\)
\(\frac{\sqrt{x}-\sqrt{2014}}{x-2014}+\frac{\sqrt{y}-\sqrt{2015}}{y-2015}+\frac{\sqrt{z}-\sqrt{2016}}{z-2016}=\frac{3}{4}\)
\(x=2018,y=2019,z=2020\)
ĐK : \(\hept{\begin{cases}x>2014\\y>2015\\z>2016\end{cases}}\)
\(\frac{\sqrt{x-2014}-1}{x-2014}+\frac{\sqrt{y-2015}-1}{y-2015}+\frac{\sqrt{z-2016}-1}{z-2016}=\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{4}-\frac{\sqrt{x-2014}-1}{x-2014}+\frac{1}{4}-\frac{\sqrt{y-2015}-1}{y-2015}+\frac{1}{4}-\frac{\sqrt{z-2016}-1}{z-2016}=0\)
\(\Leftrightarrow\frac{x-2010-4\sqrt{x-2014}}{4\left(x-2014\right)}+\frac{y-2011-4\sqrt{y-2015}}{4\left(y-2015\right)}+\frac{z-2012-4\sqrt{z-2016}}{4\left(x-2014\right)}=0\)
\(\Leftrightarrow\frac{\left(2-\sqrt{x-2014}\right)^2}{4\left(x-2014\right)}+\frac{\left(2-\sqrt{y-2015}\right)^2}{4\left(y-2015\right)}+\frac{\left(2-\sqrt{z-2016}\right)^2}{4\left(z-2016\right)}=0\)( 1 )
Mà \(\hept{\begin{cases}\frac{\left(2-\sqrt{x-2014}\right)^2}{4\left(x-2014\right)}\ge0\forall x>2014\\\frac{\left(2-\sqrt{y-2015}\right)^2}{4\left(y-2015\right)}\ge0\forall y>2015\\\frac{\left(2-\sqrt{z-2016}\right)^2}{4\left(z-2016\right)}\ge0\forall z>2016\end{cases}}\)( 2 )
Từ ( 1 ) và ( 2 ) => \(\hept{\begin{cases}\left(2-\sqrt{x-2014}\right)^2=0\\\left(2-\sqrt{y-2015}\right)^2=0\\\left(2-\sqrt{z-2016}\right)^2=0\end{cases}}\)
<=> \(\hept{\begin{cases}\sqrt{x-2014}=2\\\sqrt{y-2015}=2\\\sqrt{z-2016}=2\end{cases}}\)<=>\(\hept{\begin{cases}x=2018\\y=2019\\z=2020\end{cases}}\)( tmđk )
Vậy ( x ; y ; z ) = ( 2018 ; 2019 ; 2020 )
Giải pt
1)x+y+z+8=\(2\sqrt{x-1}\)+\(4\sqrt{y-2}\)+\(6\sqrt{z-3}\)
2)\(\sqrt{x}+\sqrt{x+1}=1\)
3)\(\left(1+\sqrt{x^2+2017+2016}\right)\)\(\left(\sqrt{2016+x}-\sqrt{x+1}\right)\)=2015
1.
ĐKXĐ: $x\geq 1; y\geq 2; z\geq 3$
PT \(\Leftrightarrow x+y+z+8-2\sqrt{x-1}-4\sqrt{y-2}-6\sqrt{z-3}=0\)
\(\Leftrightarrow [(x-1)-2\sqrt{x-1}+1]+[(y-2)-4\sqrt{y-2}+4]+[(z-3)-6\sqrt{z-3}+9]=0\)
\(\Leftrightarrow (\sqrt{x-1}-1)^2+(\sqrt{y-2}-2)^2+(\sqrt{z-3}-3)^2=0\)
\(\Rightarrow \sqrt{x-1}-1=\sqrt{y-2}-2=\sqrt{z-3}-3=0\)
\(\Leftrightarrow \left\{\begin{matrix} x=2\\ y=6\\ z=12\end{matrix}\right.\)
2.
ĐKXĐ: $x\geq 0$
PT $\Leftrightarrow \sqrt{x+1}=1-\sqrt{x}$
$\Rightarrow x+1=(1-\sqrt{x})^2=x+1-2\sqrt{x}$
$\Leftrightarrow 2\sqrt{x}=0$
$\Leftrightarrow x=0$
Thử lại thấy thỏa mãn
Vậy $x=0$
3.
ĐKXĐ: $x\geq -1$
PT \(\Leftrightarrow (1+\sqrt{x^2+4033}).\frac{(x+2016)-(x+1)}{\sqrt{x+2016}+\sqrt{x+1}}=2015\)
\(\Leftrightarrow 1+\sqrt{x^2+4033}=\sqrt{x+2016}+\sqrt{x+1}\)
\(\Leftrightarrow (1+\sqrt{x^2+4033})^2=(\sqrt{x+2016}+\sqrt{x+1})^2\)
Áp dụng BĐT Bunhiacopxky:
\(\text{VP}\leq 2(x+2016+x+1)=4x+4034\)
\(\text{VP}=x^2+4034+2\sqrt{x^2+4033}\geq x^2+4034+2\sqrt{4033}>x^2+4034+5\)
Mà: $x^2+4034+5-(4x+4034)=(x-2)^2+1> 0$
$\Rightarrow x^2+4034+5> 4x+4034$
$\Rightarrow \text{VP}> \text{VT}$
Do đó pt vô nghiệm.
giải pt sau
a,x+y+4=2\(\sqrt{x}\)+4\(\sqrt{y-1}\)
b,\(\sqrt{x}\)+\(\sqrt{y-1}\)+\(\sqrt{z-2}\)=\(\dfrac{1}{2}\)(x+y+z)
Lời giải:
a/ ĐKXĐ: $x\geq 0; y\geq 1$
PT $\Leftrightarrow (x-2\sqrt{x}+1)+[(y-1)-4\sqrt{y-1}+4]=0$
$\Leftrightarrow (\sqrt{x}-1)^2+(\sqrt{y-1}-2)^2=0$
Vì $(\sqrt{x}-1)^2\geq 0; (\sqrt{y-1}-2)^2\geq 0$ với mọi $x,y$ thuộc đkxđ
Do đó để tổng của chúng bằng $0$ thì:
$\sqrt{x}-1=\sqrt{y-1}-2=0$
$\Leftrightarrow x=1; y=5$
b. ĐKXĐ: $x\geq 0; y\geq 1; z\geq 2$
PT $\Leftrightarrow 2\sqrt{x}+2\sqrt{y-1}+2\sqrt{z-2}=x+y+z$
$\Leftrightarrow (x-2\sqrt{x}+1)+[(y-1)-2\sqrt{y-1}+1]+[(z-2)-2\sqrt{z-2}+1]=0$
$\Leftrightarrow (\sqrt{x}-1)^2+(\sqrt{y-1}-1)^2+(\sqrt{z-2}-1)^2=0$
$\Rightarrow \sqrt{x}-1=\sqrt{y-1}-1=\sqrt{z-2}-1=0$
$\Leftrightarrow x=1; y=2; z=3$
giải pt sau
a,x+y+z+4=2\(\sqrt{x-2}\)+4\(\sqrt{y-4}\)+6\(\sqrt{z-5}\)
a) Cho x,y,z thỏa mãn x+y+z+xy+yz+zx=6. Tìm Min \(P=x^2+y^2+z^2\)
giải hệ pt : 1) \(\left\{{}\begin{matrix}\dfrac{1}{\sqrt{x}}+\sqrt{2-\dfrac{1}{y}}=2\\\dfrac{1}{\sqrt{y}}+\sqrt{2-\dfrac{1}{x}}=2\end{matrix}\right.\)
2) \(\left\{{}\begin{matrix}x^2+xy+y^2=7\\x^4+x^2y^2+y^4=21\end{matrix}\right.\)
1. Với mọi số thực x;y;z ta có:
\(x^2+y^2+z^2+\dfrac{1}{2}\left(x^2+1\right)+\dfrac{1}{2}\left(y^2+1\right)+\dfrac{1}{2}\left(z^2+1\right)\ge xy+yz+zx+x+y+z\)
\(\Leftrightarrow\dfrac{3}{2}P+\dfrac{3}{2}\ge6\)
\(\Rightarrow P\ge3\)
\(P_{min}=3\) khi \(x=y=z=1\)
1.1
ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}\dfrac{1}{\sqrt{x}}=a>0\\\dfrac{1}{\sqrt{y}}=b>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+\sqrt{2-b^2}=2\\b+\sqrt{2-a^2}=2\end{matrix}\right.\)
\(\Rightarrow a-b+\sqrt{2-b^2}-\sqrt{2-a^2}=0\)
\(\Leftrightarrow a-b+\dfrac{\left(a-b\right)\left(a+b\right)}{\sqrt{2-b^2}+\sqrt{2-a^2}}=0\)
\(\Leftrightarrow a=b\Leftrightarrow x=y\)
Thay vào pt đầu:
\(a+\sqrt{2-a^2}=2\Rightarrow\sqrt{2-a^2}=2-a\) (\(a\le2\))
\(\Leftrightarrow2-a^2=4-4a+a^2\Leftrightarrow2a^2-4a+2=0\)
\(\Rightarrow a=1\Rightarrow x=y=1\)
2.
\(\left\{{}\begin{matrix}x^2+xy+y^2=7\\\left(x^2+y^2\right)^2-x^2y^2=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+xy+y^2=7\\\left(x^2+xy+y^2\right)\left(x^2-xy+y^2\right)=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+xy+y^2=7\\x^2-xy+y^2=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x^2+3xy+3y^2=21\\7x^2-7xy+7y^2=21\end{matrix}\right.\)
\(\Rightarrow4x^2-10xy+4y^2=0\)
\(\Leftrightarrow2\left(2x-y\right)\left(x-2y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=2x\\y=\dfrac{1}{2}x\end{matrix}\right.\)
Thế vào pt đầu
...
Tính GTLN của biểu thức A.
\(A=\dfrac{1-\sqrt{x}}{\sqrt{x}+2}\)(đk: \(x\ge0,x\ne1,x\ne4\))
B2. Giải pt
\(\sqrt{x-3}+\sqrt{y-5}+\sqrt{z-4}=20-\dfrac{4}{\sqrt{x-3}}-\dfrac{9}{\sqrt{y-5}}-\dfrac{25}{\sqrt{z-4}}\)
\(A=\dfrac{1-\sqrt{x}}{\sqrt{x}+2}=\dfrac{3-\left(\sqrt{x}+2\right)}{\sqrt{x}+2}=\dfrac{3}{\sqrt{x}+2}-1\)
Có \(\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+2\ge2\Leftrightarrow\dfrac{3}{\sqrt{x}+2}\le\dfrac{3}{2}\)\(\Leftrightarrow\dfrac{3}{\sqrt{x}+2}-1\le\dfrac{1}{2}\)\(\Leftrightarrow A\le\dfrac{1}{2}\)
Dấu "=" xảy ra khi x=0 (tm)
Vậy \(A_{max}=\dfrac{1}{2}\)
Bài 2:
Đk: \(x\ge3;y\ge5;z\ge4\)
Pt\(\Leftrightarrow\sqrt{x-3}+\dfrac{4}{\sqrt{x-3}}+\sqrt{y-5}+\dfrac{9}{\sqrt{y-5}}+\sqrt{z-4}+\dfrac{25}{\sqrt{z-4}}=20\)
Áp dụng AM-GM có:
\(\sqrt{x-3}+\dfrac{4}{\sqrt{x-3}}\ge2\sqrt{\sqrt{x-3}.\dfrac{4}{\sqrt{x-3}}}=4\)
\(\sqrt{y-5}+\dfrac{9}{\sqrt{y-5}}\ge6\)
\(\sqrt{z-4}+\dfrac{25}{\sqrt{z-4}}\ge10\)
Cộng vế với vế \(\Rightarrow VT\ge20\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\sqrt{x-3}=\dfrac{4}{\sqrt{x-3}}\\\sqrt{y-5}=\dfrac{9}{\sqrt{y-5}}\\\sqrt{z-4}=\dfrac{25}{\sqrt{z-4}}\end{matrix}\right.\)\(\Leftrightarrow x=7;y=14;z=29\) (tm)
Vậy...
Giải pt \(\sqrt{x+2\sqrt{5}}=\sqrt{y}+\sqrt{z}\)
với x,y,z là các số nguyên dương
\(\left(\sqrt{x+2\sqrt{5}}\right)^2=\left(\sqrt{y}+\sqrt{z}\right)^2\Leftrightarrow x+2\sqrt{5}=\left(y+z\right)+2\sqrt{yz}\)
Vì \(2\sqrt{5}\)là thành phần vô tỉ mà cả \(x\)hay \(\left(y+z\right)\)đều nguyên dương vì vậy để có 1 hạng tử cân bằng với \(2\sqrt{5}\)thì buộc:
\(2\sqrt{yz}=2\sqrt{5}\Leftrightarrow yz=5\Rightarrow\orbr{\begin{cases}y=1,z=5\\y=5,z=1\end{cases}}\)
\(\Rightarrow x=y+z=6\)
Vậy nhận 2 nghiệm là \(\left(6;1;5\right),\left(6;5;1\right)\)
a) Giải pt: \(\frac{4}{\sqrt{x-2}}+\frac{1}{\sqrt{y}-1}+\frac{25}{\sqrt{z-5}}=16-\sqrt{x-2}-\sqrt{y-1}-\sqrt{z-5}\)
ĐKXĐ:\(\hept{\begin{cases}x-2>0\\y-1>0\\z-5>0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x>2\\y>1\\z>5\end{cases}}\)
pt\(\Leftrightarrow\frac{4}{\sqrt{x-2}}+\frac{1}{\sqrt{y-1}}+\frac{25}{\sqrt{z-5}}+\sqrt{x-2}+\sqrt{y-1}+\sqrt{z-5}=16\)
Áp dụng BĐT Cauchy:
\(\frac{4}{\sqrt{x-2}}+\sqrt{x-2}+\frac{1}{\sqrt{y-1}}+\sqrt{y-1}+\frac{25}{\sqrt{z-5}}+\sqrt{z-5}\)
\(\ge2\sqrt{\frac{4}{\sqrt{x-2}}.\sqrt{x-2}}+2\sqrt{\frac{1}{\sqrt{y-1}}.\sqrt{y-1}}+2\sqrt{\frac{25}{\sqrt{z-5}}.\sqrt{z-5}}\)
\(=2\sqrt{4}+2\sqrt{1}+2\sqrt{25}=2.2+2.1+2.5\)
\(=4+2+10=16\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x-2=4\\y-1=1\\z-5=25\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=2\\z=30\end{cases}}\)
giải pt: \(\sqrt{x-2009}+\sqrt{y-2008}+\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\)
Phương trình có vô số nghiệm
Nếu thay \(\sqrt{y-2008}\) bằng \(\sqrt{y+2008}\) thì phương trình có bộ nghiệm duy nhất: \(\left(x;y;z\right)=\left(2010;-2007;3\right)\)