giải phương trình:
((x-a)/bc-1/b)+((x-b)/ca-1/c)+((x-c/ab)-1/a)=(ab+bc+ca)/abc
giải phương trình sau
\(\left(\dfrac{x-a}{bc}-\dfrac{1}{b}\right)+\left(\dfrac{x-b}{ca}-\dfrac{1}{c}\right)+\left(\dfrac{x-c}{ab}-\dfrac{1}{a}\right)=\dfrac{ab+bc+ca}{abc}\)
b1 : cho abc(ab+bc+ca)khác0 giải phương trình ẩn x (x-b-c)/a+(x-c-a)/b+(x-a-c)/c
Giải phương trình:
a) x(x+2)+a2-3=2a(x+1)
b)x3-(a+b+c)x2+(ab+bc+ca)x-abc=0
a) x(x+2)+a2-3=2a(x+1)
<=> x2+2x-2ax+a2-2a-3=0
<=> (x2-ax-x)-(ax-a2-a)+(3a-3a-3)=0
<=> (x-a-1)(x-a+3)=0
\(\Leftrightarrow\orbr{\begin{cases}x=a+1\\x=a-3\end{cases}}\)
Giải các phương trình sau:
\(\frac{x-a}{bc}+\frac{x-b}{ac}+\frac{x-c}{ab}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)với x là ẩn và abc(ab+bc+ca)≠0
Giải phương trình : \(\frac{x-a}{bc}+\frac{x-b}{ca}+\frac{x-c}{ab}=2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
giải các phương trình sau
\((x-ab/a+b)+(x-bc/b+c)+(x-ca/c+a)=a+b+c \)
với a,b,c>o
Lời giải:
PT $\Leftrightarrow 3x-\left(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ac}{a+c}\right)=a+b+c$
$\Leftrightarrow 3x=\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}+a+b+c$
$=(ab+bc+ac)(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a})$
$\Leftrightarrow x=\frac{1}{3}(ab+bc+ac)(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a})$
Giải phương trình:
A. (x-a)/bc+(x-b)/ca+(x-c)/ab=2 (1/a+1/b+1/c)
B. |x+1|-2|x-1|=x
Cho phương trình x - b - c a + x - c - a b + x - a - b c - 3 = 0 (với abc ≠ 0 và bc + ac + ab ≠ 0). Trong các kết luận sau, kết luận đúng là:
A. Phương trình có thể có nhiều hơn 1 nghiệm
B. Phương trình có thể vô nghiệm
C. Phương trình không thể có 1 nghiệm duy nhất
D. Phương trình luôn có nghiệm duy nhất
Giải phương trình
a) \(\frac{a+b-x}{c}+\frac{b+c-x}{a}+\frac{c+a-x}{b}+\frac{4x}{a+b+c}=1\)
b)\(\frac{1}{2}\left(\frac{x-a}{bc}+\frac{x-b}{ca}+\frac{x-c}{ab}\right)=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
a) \(\frac{a+b-x}{c}+\frac{b+c-x}{a}+\frac{c+a-x}{b}+\frac{4x}{a+b+c}=1\)
\(\Leftrightarrow\frac{a+b-x}{c}+1+\frac{b+c-x}{a}+1+\frac{c+a-x}{b}+1+\frac{4x}{a+b+c}-4=0\)
\(\Leftrightarrow\frac{a+b+c-x}{c}+\frac{a+b+c-x}{a}+\frac{a+b+c-x}{b}+\frac{4x-4\left(a+b+c\right)}{a+b+c}=0\)
\(\Leftrightarrow\left(x-a-b-x\right)\left(\frac{1}{bc}+\frac{1}{ca}+\frac{1}{ab}\right)=0\)
b)đề bài như trên
\(\Leftrightarrow\left(\frac{x-a-b-c}{bc}\right)+\left(\frac{x-b}{ca}-\frac{1}{a}-\frac{1}{c}\right)+\left(\frac{x-c}{ab}-\frac{1}{a}-\frac{1}{b}\right)=0\)
\(\Leftrightarrow\left(x-a-b-c\right)\left(\frac{1}{bc}+\frac{1}{ca}+\frac{1}{ab}\right)=0\)
\(a,\frac{a+b-x}{c}+\frac{b+c-x}{a}+\frac{c+a-x}{b}+\frac{4x}{a+b+c}=1\)
\(a,\frac{a+b-x}{c}+1+\frac{b+c-x}{a}+1+\frac{c+a-x}{b}+1+\frac{4x}{a+b+c}-4=0\)
\(\Leftrightarrow\frac{a+b+c-x}{c}+\frac{a+b+c-x}{a}+\frac{a+b+c-x}{b}-\frac{4a+4b+4c-4x}{a+b+c}=0\)
\(\Leftrightarrow\left(a+b+c-x\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{4}{a+b+c}\right)=0\)
\(\Leftrightarrow a+b+c-x=0\)Do \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{4}{a+b+c}\ne0\)
\(\Leftrightarrow x=a+b+c\)
Vậy phương trình có nghiệm \(x=a+b+c\)