Cho (d):y=(4m-3)x+9(m#3/4) ; (d'):y=(m+6)x+m^2 (m# -6)
a)Tìm điều kiện của m để (d)//(d')
b)Tìm điều kiện của m để (d) trùng (d')
c)Tìm điều kiện của m để (d) cắt (d')
d)
a: Để (d)//(d') nên \(\left\{{}\begin{matrix}4m-3=m+6\\m^2< >9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\m\notin\left\{3;-3\right\}\end{matrix}\right.\Leftrightarrow m\in\varnothing\)
b: Để (d) trùng với (d') thì \(\left\{{}\begin{matrix}4m-3=m+6\\m^2=9\end{matrix}\right.\Leftrightarrow m=3\)
c: Để hai đường thẳng cắt nhau thì 4m-3<>m+6
hay m<>3
Cho (d):y=(4m-3)x+9(m#3/4) ; (d'):y=(m+6)x+m^2 (m# -6)
a)Tìm điều kiện của m để (d)//(d')
b)Tìm điều kiện của m để (d) trùng (d')
c)Tìm điều kiện của m để (d) cắt (d')
d)Tìm điều kiện của m để (d) cắt (d') tại một điểm trên trục tung
a: Để (d)//(d') nên \(\left\{{}\begin{matrix}4m-3=m+6\\m^2< >9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\m\notin\left\{3;-3\right\}\end{matrix}\right.\Leftrightarrow m\in\varnothing\)
b: Để (d) trùng với (d') thì \(\left\{{}\begin{matrix}4m-3=m+6\\m^2=9\end{matrix}\right.\Leftrightarrow m=3\)
c: Để hai đường thẳng cắt nhau thì 4m-3<>m+6
hay m<>3
( d ) y = ( m\(^2\) + 2m )x + m + 1 với m là tham số. Tìm điều kiện của m :
a) (d ) song song với đường thẳng d1: y= -x - 2023
b) (d) đi qua điểm A ( 0 ; 2024 )
c) (d) đi qua điểm của 2 đường thẳng ( d2) y= x - 2 và ( d3 ) y= -4x + 3
a: Để (d)//(d1) thì \(\left\{{}\begin{matrix}m^2+2m=-1\\m+1\ne-2023\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m^2+2m+1=0\\m\ne-2024\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(m+1\right)^2=0\\m\ne-2024\end{matrix}\right.\)
=>(m+1)2=0
=>m+1=0
=>m=-1
b: Thay x=0 và y=2024 vào (d), ta được:
\(0\left(m^2+2m\right)+m+1=2024\)
=>m+1=2024
=>m=2023
c: Tọa độ giao điểm của (d2) và (d3) là:
\(\left\{{}\begin{matrix}x-2=-4x+3\\y=x-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}5x=5\\y=x-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1-2=-1\end{matrix}\right.\)
Thay x=1 và y=-1 vào (d), ta được:
\(1\left(m^2+2m\right)+m+1=-1\)
=>\(m^2+3m+2=0\)
=>(m+2)(m+1)=0
=>\(\left[{}\begin{matrix}m+2=0\\m+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=-2\\m=-1\end{matrix}\right.\)
Cho hàm số y = f(x) = mx + 2m − 3 có đồ thị (d). gọi A, B là hai điểm thuộc đồ thị
và có hoành độ lần lượt là −1 và 2.
1 Xác định tọa độ hai điểm A và B.
2 Tìm m để cả hai điểm A và B cùng nằm phía trên trục hoành.
3 Tìm điều kiện của m để f(x) > 0, ∀x ∈ [−1; 2]
Tìm m, để:
a) 3 đường thẳng:
y=-5(x+1) (d1)
y=mx+3 (d2) ( phân biệt và đồng quy)
y=3x+m (d3)
b) (d) (2m-8)x+(m+2)y+m+1=0 và (d'): (8+2m)x+(m-2)y+3m+1=0 vuông góc với nhau
a) Tìm các giá trị tham số m để phương trình x2 – (2m – 3)x + m(m – 3) = 0 có 2 nghiêm phân biệt x1; x2 thỏa mãn điều kiện 2x1 – x2 = 4
b) Cho Parabol (P): \(y=-3x^2\) và đường thẳng (d): \(y=2x-m+9\) .Tìm m để đường thẳng (d) cắt Parabol (P) tại hai điểm nằm về hai phía của trục tung.
1. Lập phương trình đường thẳng (d) biết (d)
a) Đi qua A(-3;2) và tạo với tia Ox một góc 45⁰
b) Đi qua B(3;2) và tạo với tia Ox một góc 60⁰
2. Tìm điểm cố định của đường thẳng
a) y=mx+3m-2
b) y=(m+1)x-2m+1
c) y=(2m+3)x-4m+2
3. Tìm m để các hàm số sau nghịch biến trên R
a) y=(m²-1)x+2m-5
b) y=(-m²-4)x+m-3
c) y=(-m²+9)x+m²+1
Tìm 3 đường thẳng sau đồng quy :
a, 2x - y=m ( d1)
x - y = 2m ( d2)
mx - ( m - 1)y = 2m - 1 ( d3)
b, mx + y = m2 + 1 ( d1)
( m + 2 )x - ( 3m + 5 )y = m - 5 ( d2)
( 2 - m )x - 2y = -m2 + 2m - 2 ( d3)
Help me !!!!
1.cho hàm số y=(2m-2/2) x+2n-1(d) và hàm số y=4x+2-n(d') a) tìm điều kiện của m để (d) là hàm số bậc nhất b) tìm điều kiện của m để (d) là hàm số đồng biến c) hàm số (d') đồng biến hay nghịch biến tại sao? d) vẽ đồ thị hàm số (d') khi n=4 e) tìm điều kiện của m, n để (d) // (d') 2. Cho 2 hàm số y= -x + 6 =y=3x -6 a) vẽ 2 hàm số trên cùng hệ trục tọa độ b) tìm tọa độ giao điểm của 2 hàm số trên Ai giúp mình với, mình cần gấp ạ!!
Bài 1:
a: Để (d) là hàm số bậc nhất thì 2m-2<>0
hay m<>1
b: Để (d) là hàm số đồng biến thì 2m-2>0
hay m>1
c: Hàm số (d') đồng biến vì a=4>0
Bài 2:
b: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}-x+6=3x-6\\y=-x+6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=3\end{matrix}\right.\)