cho tam giác abc vuông tại A đường cao AH CMR AB+AC<BC+AH
bài 1: tam giác ABC vuông tại A đường cao AB/AC =3/4; BC= 10. tính AH, BH
bài 2: cho tam giác ABC vuông tại A đường cao AH=33,6 biết AB/AC =27/4 tính các cạnh của tam giác ABC
bài 3: cho tam giác ABC vuông tại A đường cao AH tính đường cao AH,AB,AC nếu biết BH=36; CH=64
1
\(\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow AB=\dfrac{3}{.4}AC\)
Theo pytago xét tam giác ABC vuông tại A có:
\(\sqrt{AB^2+AC^2}=BC^2\\ \Rightarrow\sqrt{\left(\dfrac{3}{4}AC\right)^2+AC^2}=10\\ \Rightarrow AC=8\\ \Rightarrow AB=\dfrac{3.8}{4}=6\)
Theo hệ thức lượng xét tam giác ABC vuông tại A, đường cao AH có:
\(AB^2=BH.BC\\ \Leftrightarrow BH=\dfrac{AH^2}{BC}=\dfrac{6^2}{10}=3,6\)
2
\(\dfrac{AB}{AC}=\dfrac{27}{4}\Rightarrow AB=\dfrac{27}{4}AC\)
\(BC=\sqrt{AB^2+AC^2}=\sqrt{\left(\dfrac{27}{4}AC\right)^2+AC^2}=\dfrac{\sqrt{745}AC}{4}\) ( Theo pytago trong tam giác ABC vuông tại A)
Theo hệ thức lượng trong tam giác ABC vuông tại A, đường cao AH có:
\(AH.BC=AB.AC\\ \Leftrightarrow33,6.\dfrac{\sqrt{745}}{4}AC=\dfrac{27}{4}AC.AC\\ \Rightarrow AC=\dfrac{56\sqrt{745}}{45}\)
\(\Rightarrow\left\{{}\begin{matrix}AB=\dfrac{27}{4}.\dfrac{56\sqrt{745}}{45}=\dfrac{42\sqrt{745}}{5}\\BC=\dfrac{\sqrt{745}}{4}.\dfrac{56\sqrt{745}}{45}=\dfrac{2086}{9}\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}AC\approx33,97\\AB\approx229,28\\BC\approx231,78\end{matrix}\right.\)
3
`BC=HB+HC=36+64=100`
Theo hệ thức lượng có (trong tam giác ABC vuông tại A đường cao AH):
\(AH^2=HB.HC\\ \Rightarrow AH=\sqrt{36.64}=48\)
\(AB=\sqrt{HB.BC}=\sqrt{36.100}=60\\ AC=\sqrt{HC.BC}=\sqrt{64.100}=80\)
Cho tam giác ABC vuông tại A, đường cao AH .cmr : BC-AB> AC-AH
Cho tam giác ABC vuông tại A và đường cao AH. CMR BC+AH>AB+AC
Cho tam giác ABC vuông tại A, đường cao AH. Vẽ HM vuông góc AB, HN vuông góc AC. CMR;
a) AN.AC=HB.HC
b) AB²/AC²=BH/HC
c) AH²+BH²=BH.BC
b: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\)
hay \(\dfrac{AB^2}{AC^2}=\dfrac{BH}{CH}\)
Cho tam giác ABC vuông tại A, đường cao AH. Vẽ AH vuông góc với AB tại E, HF vuông góc với AC tại F.
a) CMR: AE.EB = \(EH^2\)
Cho tam giác ABC vuông tại A. Đường cao AH. kẻ HE vuông góc AB, Hf vuông góc AC. Cmr: AH^2= BC.BE.CF
cho tam gsc ABC vuông tại A, đường cao AH. kẻ đường phân giác góc B của tam giác ABC cắt AH tại E . trên AB lấy M, trên AC lấy N sao cho AM/AB=CN/AC. CMR góc NHM = 90 độ
cho tam giác ABC vuông tại A ( AB < AC) đường cao AH. Trên AC lấy E sao cho AH = AE. Từ E kẻ đường vuông góc với AC, cắt BC tại D
a,CMR tam giác AHD = tam giác AED
b, so sánh DH và DC
c,Gọi K là giao điểm của DE và AH. CM AD vuông góc vơi KC
a: Xét ΔAHD vuông tại H và ΔAED vuông tại E có
AD chung
AH=AE
=>ΔAHD=ΔAED
b: DH=DE
DE<DC
=>DH<DC
c: Xét ΔAKC có
CH,KE là đường cao
CH căt KE tại D
=>D là trực tâm
=>AD vuông góc KC