Những câu hỏi liên quan
NN
Xem chi tiết
H24
6 tháng 3 2016 lúc 10:23

\(\frac{x}{3}=\frac{y}{5}=\frac{z+1}{2}=k\Rightarrow x=3k;y=5k;z=2k-1\)

ta có:\(2.\left(3k\right)^2+\left(5k\right)^2+2\left(2k-1\right)^2+4\left(2k-1\right)=202\)

\(18k^2+25k^2+8k^2-2+8k-4=202\)

\(59k^2-6=202\)

\(59k^2=208\)

...

Bình luận (0)
DF
Xem chi tiết
NL
10 tháng 1 2021 lúc 23:36

Bạn tham khảo:

Cho ba số thực dương x;y;z thoả mãn \(5\left(x y z\right)^2\ge14\left(x^2 y^2 z^2\right)\) Tìm giá trị lớn nhất nhỏ nh... - Hoc24

Bình luận (0)
NA
Xem chi tiết
DH
Xem chi tiết
NL
23 tháng 8 2021 lúc 18:57

Cho ba số thực dương x;y;z thoả mãn \(5\left(x+y+z\right)^2\ge14\left(x^2+y^2+z^2\right)\) Tìm giá trị lớn nhất nhỏ nh... - Hoc24

Bình luận (0)
H24
Xem chi tiết
EC
4 tháng 9 2021 lúc 10:40

Ta có: \(\dfrac{x^3}{y+2z}+\dfrac{y^3}{z+2x}+\dfrac{z^3}{x+2y}=\dfrac{x^4}{xy+2zx}+\dfrac{y^4}{yz+2xy}+\dfrac{z^4}{zx+2yz}\)

\(\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{xy+2zx+yz+2xy+zx+2yz}=\dfrac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+zx\right)}\)

Mà ta lại có: \(xy+yz+zx\le x^2+y^2+z^2\)

 \(\Rightarrow\dfrac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+zx\right)}\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{3\left(x^2+y^2+z^2\right)}=\dfrac{1^2}{3.1}=\dfrac{1}{3}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\dfrac{1}{\sqrt{3}}\)

Bình luận (0)
AB
Xem chi tiết
H24
Xem chi tiết
AH
13 tháng 3 2021 lúc 14:32

Thay $x=\sqrt{\frac{1}{2,5}}; y=z=\sqrt{\frac{1}{0,25}}$ ta thấy đề sai bạn nhé!

Bình luận (8)
ST
Xem chi tiết
VH
Xem chi tiết
NL
2 tháng 4 2021 lúc 17:31

\(VT\le\dfrac{x}{2x+2y+2}+\dfrac{y}{2yz+2z+2}+\dfrac{z}{2z+2x+2}\)

Nên ta chỉ cần chứng minh: \(\dfrac{x}{x+y+1}+\dfrac{y}{y+z+1}+\dfrac{z}{z+x+1}\le1\)

\(\Leftrightarrow\dfrac{y+1}{x+y+1}+\dfrac{z+1}{y+z+1}+\dfrac{x+1}{z+x+1}\ge2\)

Thật vậy, ta có:

\(VT=\dfrac{\left(x+1\right)^2}{\left(x+1\right)\left(z+x+1\right)}+\dfrac{\left(y+1\right)^2}{\left(y+1\right)\left(x+y+1\right)}+\dfrac{\left(z+1\right)^2}{\left(z+1\right)\left(y+z+1\right)}\)

\(VT\ge\dfrac{\left(x+y+z+3\right)^2}{\left(x^2+y^2+z^2\right)+3\left(x+y+z\right)+xy+yz+zx+3}\)

\(VT\ge\dfrac{6\left(x+y+z\right)+2\left(xy+yz+zx\right)+12}{3\left(x+y+z\right)+xy+yz+zx+6}=2\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z=1\)

Bình luận (0)