Tim min
P=(x^2 + 1)(y^4 + 1) biết x + y = căn 10
Mình đang cần rất gấp nhé
Mình đang cần gấp nhé
X lớn hơn bằng 0, tìm minP= (x2+2x+17)/2(x-1)Cho x,y,z >0 và x+y+z lớn hơn hoặc bằng 12. Tìm minP= x/ căn y + y/ căn z + z/ căn x
x,y>0,x+y=1.Tim minP=2018/xy+2019/x^2+y^2
cho x,y,z là các số dương thỏa x+y+z>=12.tìm minP= x/căn y+y/căn z+z/căn z
bài 1rút gọn bt a, 2 căn 10 - 5 trên 4 - căn 10 b, (2/3 căn 3) - (1/4 căn 18) + (2/5 căn 2) - 1/4 căn 12 bài 2:c/m các đẳng thức : [căn x + căn y trên căn x - căn y) - ( căn x - căn y trên căn x + căn y) : căn xy trên x-y =4 bài 3: cho B={[2 căn x trên căn x +3] + [ căn x trên căn x - 3] - 3[ căn x +3] trên x-9} : { [ 2 căn x -2 trên căn x -3] -1} a, rút gọn b, tìm x để P<-1 Mọi ng giúp mk nhé
Cho x+y=\(\dfrac{4}{3}\), x, y>0. Tìm Min
P=\(\dfrac{3}{x}\)+\(\dfrac{1}{3y}\)
Giúp mình với
Tìm minP biết
P = x2 - x√y + x + y - √y + 1
Tìm x,y biết
(x^2-4)/x + (y^2-4)/y + 8 = 4(căn(x-1)+căn(y-1)
Cho x,y,z > 0 và xyz=1 . Tìm MinP = \(\Sigma\dfrac{1}{x^4\left(y+1\right)\left(z+1\right)}\)
Đặt \(\left(x;y;z\right)=\left(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\right)\Rightarrow abc=1\)
\(P=\sum\dfrac{a^4}{\left(\dfrac{1}{b}+1\right)\left(\dfrac{1}{c}+1\right)}=\sum\dfrac{a^4bc}{\left(b+1\right)\left(c+1\right)}=\sum\dfrac{a^3}{\left(b+1\right)\left(c+1\right)}\)
Ta có:
\(\dfrac{a^3}{\left(b+1\right)\left(c+1\right)}+\dfrac{b+1}{8}+\dfrac{c+1}{8}\ge\dfrac{3a}{4}\)
Tương tự và cộng lại:
\(P+\dfrac{a+b+c}{4}+\dfrac{3}{4}\ge\dfrac{3\left(a+b+c\right)}{4}\Rightarrow P\ge\dfrac{a+b+c}{2}-\dfrac{3}{4}\ge\dfrac{3}{2}-\dfrac{3}{4}=\dfrac{3}{4}\)