Những câu hỏi liên quan
LT
Xem chi tiết
DL
20 tháng 1 2019 lúc 23:32

a, Xét tam giác ABD và tam giác ACE

    +, Chung​ góc A​

    +, Góc ADB = góc AEC( = 90​ độ)

Suy ra tam giác ABD đồng dạng với tam giác ACE

     

Bình luận (0)
TL
Xem chi tiết
NT
25 tháng 3 2023 lúc 13:16

a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

góc C chung

=>ΔABC đồng dạng với ΔHAC

b: ΔABC đồng dạng với ΔHAC
=>CA/CH=CB/CA

=>CH*CB=CA^2=BC^2-AB^2

Bình luận (0)
SM
Xem chi tiết
NT
9 tháng 3 2023 lúc 20:36

a: Xét ΔAEB vuông ạti E và ΔAFC vuôg tại F có

góc BAE chung

=>ΔAEB đồng dạg vơi ΔAFC

=>AE/AF=AB/AC
=>AE*AC=AB*AF
b: Xét ΔAEF và ΔABC có

AE/AB=AF/AC
góc A chung

=>ΔAEF đồng dạng vơi ΔABC

Bình luận (0)
H24
Xem chi tiết
H24
6 tháng 5 2017 lúc 20:00
Xét tam giác ABC và HBA  có  góc A = góc H =90 độ & góc B chung  . => tam giác ABC  đồng dạng tam giác HBA (G-G)Xét tam giác AHB và tam giác CHA có AHB =CHA =90 độ  & góc HAB = HCA ( cùng phụ góc  B) Suy ra tam giác AHB đồng dạng  CHA (g-g). Suy ra AH/CH =BH/AH hay AB2=BH.CH
Bình luận (0)
NT
Xem chi tiết
NH
5 tháng 4 2023 lúc 13:27

loading...

Xét \(\Delta\) HBA và \(\Delta\) ABC có \(\widehat{H}\)  =  \(\widehat{A}\) = 900\(\widehat{B}\) chung

⇒  \(\Delta\) HBA  \(\sim\)  \(\Delta\) ABC (g-g)

Tương tự ta có:   \(\Delta\) HAC  \(\sim\)  \(\Delta\) ABC (g-g-g)

    ⇒ \(\Delta\) HBA  \(\sim\)   \(\Delta\) HAC ( t/c hai tam giác đồng dạng)

   \(\dfrac{HB}{HA}\) = \(\dfrac{HA}{HC}\) = \(\dfrac{BA}{AC}\)( theo khái niệm của tam giác đồng dạng.)

Mặt khác: KI là đường trung bình của tam giác ABH nên:

        \(\dfrac{HI}{HA}\) = \(\dfrac{HK}{HB}\) ⇒  \(\dfrac{HK}{HI}\) =   \(\dfrac{HB}{HA}\)

⇒ \(\dfrac{HK}{HI}\) = \(\dfrac{HA}{HC}\) mà \(\widehat{AHK}\) = \(\widehat{CHI}\)  = 900

⇒ \(\Delta\)  AHK \(\sim\) \(\Delta\) CHI ( c-g-c)

b, Kéo dài CI cắt AK tại D ta có:

vì  \(\Delta\)  AHK \(\sim\) \(\Delta\) CHI \(\widehat{HAK}\) = \(\widehat{HCI}\)

Xét \(\Delta\) HAK và \(\Delta\) DCK có: \(\widehat{A}\) = \(\widehat{C}\) ( cmt)

                                           \(\widehat{K}\) chung

   ⇒ \(\Delta\) HAK \(\sim\) \(\Delta\) DCK ( g-g)

  ⇒ \(\widehat{H}\) = \(\widehat{D}\)= 900 ⇒ AK \(\perp\) CI tại D ( đpcm)

 

 

      

 

 

Bình luận (0)
NT
Xem chi tiết
NT
17 tháng 8 2022 lúc 8:16

a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có 

\(\widehat{FAC}\) chung

Do đó: ΔAEB∼ΔAFC(g-g)

b) Ta có: ΔAEB∼ΔAFC(cmt)

nên \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

Xét ΔAEF và ΔABC có 

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)

\(\widehat{BAC}\) chung

Do đó: ΔAEF∼ΔABC(c-g-c)

Bình luận (0)
HN
Xem chi tiết
NT
20 tháng 3 2023 lúc 18:38

loading...  loading...  

Bình luận (0)
TN
Xem chi tiết
TN
23 tháng 4 2016 lúc 19:24

AI bit chi dum di

Bình luận (0)
H24
23 tháng 4 2016 lúc 20:56

vẽ hình

a xét tam giác ABD và tam giác ACE có :

chung góc BAC

góc BDA = góc CEA = 90 độ

=> tam giác ABD đồng dạng tam giác ACE (g.g)

b, xét tam giác EHB và tam giác DHC có

góc BDC = góc CFB = 90 độ 

góc BHF = góc DHC ( đối đỉnh )

=> tam giác EHB đồng dạng với tam giác DHC (g.g)

=> \(\frac{HB}{HC}=\frac{HE}{HD}\) 

=> HD . HB = HE . HC ( đpcm )

c, vì tam giác ABD đồng dạng với tam giác ACE ( câu a)

=> \(\frac{AB}{AC}=\frac{AD}{AE}\)  => \(\frac{AE}{AC}=\frac{AD}{AB}\)

xét tam giác ADE và tam giác ABC có 

chung góc BAC

\(\frac{AE}{AC}=\frac{AD}{AB}\) 

=> tam giác ADE đồng dạng với tam giác ABC ( c.g.c) 

=> góc ADE = góc ABC ( đpcm)

Bình luận (0)
NN
Xem chi tiết
BD
19 tháng 3 2016 lúc 11:05

Từ giả thiết suy ra với mọi O đều có ?

\(\overrightarrow{OG}=\frac{1}{3}\left(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}\right)\)  và  \(\overrightarrow{OG_1}=\frac{1}{3}\left(\overrightarrow{OA}_1+\overrightarrow{OB_1}+\overrightarrow{OC}_1\right)\)

Mà :

\(\overrightarrow{OG_2=}\frac{1}{3}.\left(\overrightarrow{OGa}+\overrightarrow{OG_b}+\overrightarrow{OG_c}\right)\)

        \(=\frac{1}{3}\left(\frac{1}{3}\left(\overrightarrow{OA}+\overrightarrow{OB_1}+\overrightarrow{OC_1}\right)+\frac{1}{3}\left(\overrightarrow{OB}+\overrightarrow{OC_1}+\overrightarrow{OA_1}\right)+\frac{1}{3}\left(\overrightarrow{OC}+\overrightarrow{OA_1}+\overrightarrow{OB_1}\right)\right)\)

        \(=\frac{1}{3}\left(\frac{1}{3}\left(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}\right)+\frac{2}{3}\left(\overrightarrow{OA_1}+\overrightarrow{OB_1}+\overrightarrow{OC}_1\right)\right)\)

        \(=\frac{1}{3}\overrightarrow{OG}+\frac{2}{3}\overrightarrow{OG_1}\)

Suy ra :

\(3\overrightarrow{OG_2}=\overrightarrow{OG}+2\overrightarrow{OG_1}\)  với mọi O. Điều này có nghĩa là \(G,G_1,G_2\) thẳng hàng => Điều phải chứng minh

Bình luận (0)