Những câu hỏi liên quan
CD
Xem chi tiết
NT
9 tháng 1 2020 lúc 8:36

\(\sqrt{\left(1-\sqrt{50}\right)^2}=\sqrt{50}-1\approx6,07>6\)

\(\Rightarrow\sqrt{\left(1-\sqrt{50}\right)^2}>6\)

Bình luận (0)
 Khách vãng lai đã xóa
TQ
9 tháng 1 2020 lúc 9:53

Ta có:\(\sqrt{\left(1-\sqrt{50}\right)^2}=|1-\sqrt{50}|=\sqrt{50}-1>\sqrt{49}-1=7-1=6\)

\(\Rightarrow\sqrt{\left(1-\sqrt{50}\right)^2>6}\)

Bình luận (0)
 Khách vãng lai đã xóa
QE
Xem chi tiết
NT
2 tháng 7 2021 lúc 23:06

a) Ta có: \(\left(7\sqrt{48}+3\sqrt{27}-2\sqrt{12}\right)\cdot\sqrt{3}\)

\(=\left(7\cdot4\sqrt{3}+3\cdot3\sqrt{3}-2\cdot2\sqrt{3}\right)\cdot\sqrt{3}\)

\(=33\sqrt{3}\cdot\sqrt{3}\)

=99

b) Ta có: \(\left(12\sqrt{50}-8\sqrt{200}+7\sqrt{450}\right):\sqrt{10}\)

\(=\left(12\cdot5\sqrt{2}-8\cdot10\sqrt{2}+7\cdot15\sqrt{2}\right):\sqrt{10}\)

\(=\dfrac{85\sqrt{2}}{\sqrt{10}}=\dfrac{85}{\sqrt{5}}=17\sqrt{5}\)

c) Ta có: \(\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\dfrac{1}{4}\sqrt{8}\right)\cdot3\sqrt{6}\)

\(=\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\dfrac{1}{4}\cdot2\sqrt{2}\right)\cdot3\sqrt{6}\)

\(=\left(2\sqrt{6}-4\sqrt{3}+3\sqrt{2}\right)\cdot3\sqrt{6}\)

\(=36-36\sqrt{2}+18\sqrt{3}\)

d) Ta có: \(3\sqrt{15\sqrt{50}}+5\sqrt{24\sqrt{8}}-4\sqrt{12\sqrt{32}}\)

\(=3\cdot\sqrt{75\sqrt{2}}+5\cdot\sqrt{48\sqrt{2}}-4\sqrt{48\sqrt{2}}\)

\(=3\cdot5\sqrt{2}\cdot\sqrt{\sqrt{2}}+4\sqrt{3}\sqrt{\sqrt{2}}\)

\(=15\sqrt{\sqrt{8}}+4\sqrt{\sqrt{18}}\)

Bình luận (0)
EC
2 tháng 7 2021 lúc 23:08

a,=\(\left(28\sqrt{3}+9\sqrt{3}-4\sqrt{3}\right).\sqrt{3}\)

   \(=28.3+9.3-4.3=99\)

b,\(=\left(60\sqrt{2}-80\sqrt{2}+175\sqrt{2}\right):\sqrt{10}\)

  \(=155\sqrt{2}:\sqrt{10}=\dfrac{155}{\sqrt{5}}\)

Bình luận (0)
EC
2 tháng 7 2021 lúc 23:17

d,Ta có:\(3\sqrt{15\sqrt{50}}+5\sqrt{24\sqrt{8}}-4\sqrt{12\sqrt{32}}\)

        \(=3\sqrt{75\sqrt{2}}+5\sqrt{48\sqrt{2}}-4\sqrt{48\sqrt{2}}\)

        \(=15\sqrt{3\sqrt{2}}+20\sqrt{3\sqrt{2}}-16\sqrt{3\sqrt{2}}\)

        \(=19\sqrt{3\sqrt{2}}\)

Bình luận (0)
ML
Xem chi tiết
H24
2 tháng 8 2017 lúc 16:12

TQ:\(S_n=\dfrac{1}{\left(n+n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}=\dfrac{\sqrt{n+1}-\sqrt{n}}{n+\left(n+1\right)}\)

Mà theo AM-GM:\(n+\left(n+1\right)\ge2\sqrt{n\left(n+1\right)}\)

\(\Rightarrow S_n\le\dfrac{\sqrt{n+1}-\sqrt{n}}{2\sqrt{n\left(n+1\right)}}=\dfrac{1}{2}\left(\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\right)\)

Áp dụng:\(S< \dfrac{1}{2}\left(1-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{48}}-\dfrac{1}{\sqrt{49}}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{7}\right)=\dfrac{6}{14}=\dfrac{3}{7}\)

Bình luận (2)
HT
17 tháng 6 2018 lúc 23:12

giúp mình câu này với

Tìm GTNN của biểu thức sau:

Bình luận (0)
PA
Xem chi tiết
T8
Xem chi tiết
PA
Xem chi tiết
NA
18 tháng 7 2016 lúc 22:41

\(tacó:...\frac{1}{3.\left(\sqrt{1}+\sqrt{2}\right)}>\frac{1}{3.2}=\frac{1}{\left(1+2.1\right).2.1}\) 

\(\frac{1}{5.\left(\sqrt{2}+\sqrt{3}\right)}>\frac{1}{5.4}=\frac{1}{\left(1+2.2\right).2.2}\) 

\(\frac{1}{7.\left(\sqrt{3}+\sqrt{4}\right)}>\frac{1}{7.6}=\frac{1}{\left(1+2..3\right).2.3}\) 

....

\(\frac{1}{49.\left(\sqrt{48}+\sqrt{49}\right)}>\frac{1}{49.48}=\frac{1}{\left(1+2.48\right).2.48}\) 

cộng vế theo vế ta đươc S =\(\frac{1}{\left(1+2.1\right).2}+\frac{1}{\left(1+2.2\right).2.2}+...+\frac{1}{\left(1+2.48\right).48.2}\)

\(=\frac{1}{2}.\left(\frac{1}{3}+\frac{1}{10}+\frac{1}{21}+\frac{1}{36}+...+\frac{1}{4656}\right)\)  <  \(\frac{1}{2}.\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{1}{4656}\right)\)

mà lại có : \(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+..+\frac{1}{4656}\) 

=> \(\frac{1}{2}A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{9312}=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{96.97}\) 

             = \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...-\frac{1}{97}=\frac{1}{2}-\frac{1}{97}=\frac{95}{194}\)  

vậy S < \(\frac{95}{194}\) 

mà \(\frac{95}{194}< \frac{3}{7}\) 

=> S < \(\frac{3}{7}\)

KẾT LUẬN  : S <\(\frac{3}{7}\)

 

 

Bình luận (0)
NA
Xem chi tiết
TL
Xem chi tiết
H24
13 tháng 8 2020 lúc 22:38

Xét phân số tổng quát là: 

\(A=\frac{1}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{1\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(2n+1\right)\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}\)

\(=\frac{\sqrt{n+1}-\sqrt{n}}{2n+1}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{4n^2+4n+1}}< \frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{4n^2+4n}}\)

=>    \(A< \frac{\sqrt{n+1}-\sqrt{n}}{2\sqrt{n}.\sqrt{n+1}}=\frac{1}{2}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

Thay từng số 1; 2; ....;  48 vào phân số tổng quát A

=>   \(S< \frac{1}{2}\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{48}}-\frac{1}{\sqrt{49}}\right)\)

=>   \(S< \frac{1}{2}\left(1-\frac{1}{7}\right)=\frac{1}{2}.\left(\frac{6}{7}\right)=\frac{3}{7}\)

VẬY    \(S< \frac{3}{7}\)

Bình luận (0)
 Khách vãng lai đã xóa
VT
Xem chi tiết
HT
25 tháng 9 2021 lúc 19:26

a)A=\(2\sqrt{3}-8\sqrt{3}+7\sqrt{3}=\sqrt{3}\)

b)B\(=\sqrt{\left(3-\sqrt{5}\right)^2}+\sqrt{\left(2-\sqrt{5}\right)^2}=3-\sqrt{5}+\sqrt{5}-2=1\)

d)\(=\dfrac{\left(5+\sqrt{5}\right)\left(\sqrt{5}-2\right)}{1}+1-\sqrt{5}-\dfrac{11\left(2\sqrt{5}-3\right)}{11}=5\sqrt{5}+5-10-2\sqrt{5}+1-\sqrt{5}-2\sqrt{5}+3=-1\)

Bình luận (0)