cho tam giác abc nhọn có đường cao ad be cắt nhau tại h chứng minh rằng ah^2+bc^2=ch^2+ab^2
Cho tam giác ABC nhọn các đường cao AD , BE , CR cắt nhau tại H . Chứng minh :
a) BH . BE + CH.CF = BC2
b) AH . AD +BH . BE +CH . CF = \(\frac{AB^2+AC^2+BC^2}{2}\)
a) Xét 2 tam giác vuông DHC và FBC có: ^HCD chung => \(\Delta DHC~\Delta FBC\)
=> \(\frac{CD}{CF}=\frac{CH}{BC}\) => \(CH.CF=BC.CD\) (1)
tương tự với 2 tam giác vuông DBH và EBC có: ^EBC chung => \(\Delta DBH~\Delta EBC\)
=> \(\frac{BD}{BE}=\frac{BH}{BC}\) => \(BH.BE=BC.BD\) (2)
(1) và (2) => \(CH.CF+BH.BE=BC\left(BD+CD\right)=BC^2\)
b) CM tương tự câu a), ta cũng có: \(AH.AD+BH.BE=AB^2;AH.AD+CH.CF=AC^2\)
cộng lại ta có đpcm
a: Xét ΔCDA vuông tại D và ΔCEB vuông tại E có
góc DCA chung
=>ΔCDA đồng dạng với ΔCEB
=>CD/CE=CA/CB
=>CD*CB=CA*CE và CD/CA=CE/CB
b; Xét ΔCDE và ΔCAB có
CD/CA=CE/CB
góc C chung
=>ΔCDE đồng dạng với ΔCAB
c:
Xét ΔCAB có
AD,BE là đường cao
AD cắt BE tại H
=>H là trực tâm
=>CH vuông góc AB tại F
góc CEB=góc CFB=90 độ
=>CEFB nội tiếp
=>góc CEF+góc CBF=180 độ
mà góc CEF+góc AEF=180 độ
nên góc AEF=góc CBA
=>góc AEF=góc CED
Cho tam giác nhọn ABC có AB < AC, 2 đường cao AD, BE của tam giác ABC cắt nhau tại H. Vẽ đường tròn (O) đường kính AH cắt AB tại F,
a) Chứng minh tam giác AFH vuông tại F, từ đó suy ra F, H, C thẳng hàng. b) Chứng minh 4 điểm B, F, E, C cùng thuộc một đường tròn, xác định tâm I của đường tròn đó. c) Chứng minh IE là tiếp tuyến của đường tròn (O).
a: Xét (O) có
ΔAHF nội tiếp
AH là đường kính
Do đó; ΔAHF vuông tại F
Suy ra: HF\(\perp\)AB
mà CH\(\perp\)AB
nên C,H,F thẳng hàng
b: Xét tứ giác BFEC có
\(\widehat{BFC}=\widehat{BEC}=90^0\)
Do đó: BEFC là tứ giác nội tiếp
cho tam giác ABC có 3 góc nhọn . các đường cao AD,BE,CF cắt nhau tại H
chứng minh rằng \(\frac{AH}{BC}+\frac{BH}{AC}+\frac{CH}{AB}>=\sqrt{3}\)
Cho tam giác ABC có ba góc nhọn(AB<AC; AB <BC) nội tiếp đường tròn (O; R). Hai đường cao AD và BE cắt nhau tại H, CH cắt AB tại F. Tia EF cắt tia CB tại S.
1. Chứng minh: Tứ giác BFEC nội tiếp, xác định tâm I của đường tròn này.
2. Chứng minh: FC là tia phân giác góc EFD và AF.AB =AE.AC
3. Tia EF cắt tia CB tại S. Tiếp tuyến tại B của đường tròn (I) cắt FC và AS lần lượt tại P và M. Chứng minh:ME là tiếp tuyến của (I).
4. Đường thẳng qua D song song với BE cắt BM tịa N. Đường tròn ngoại tiếp tam giác MNE cắt BE tại điểm thứ hai là K. Đường thẳng qua B song song với AC cắt DF tại Q. Chứng minh: OK vuông góc với PQ
1: góc BFC=góc BEC=90 độ
=>BFEC nộitiếp
Tâm là trung điểm của BC
2: góc EFC=góc DAC
góc DFC=góc EBC
góc DAC=góc EBC
=>góc EFC=góc DFC
=>FC là phân giác của góc EFD
BFEC nội tiếp
=>góc AFE=góc ACB
mà góc A chung
nên ΔAFE đồng dạng với ΔACB
=>AF/AC=AE/AB
=>AF*AB=AC*AE
cho tam giác ABC có 3 góc nhọn . các đường cao AD,BE,CF cắt nha cho u tại H
chứng minh rằng AH: BC+ BH: AC+ CH: AB lớn hơn căn 3
Cho tam giác Abc có ba góc nhọn các đường cao AD,BE,Cf cắt nhau tại H
a)chứng minh Tam giac AEF đồng dạng với Tam giác ABC
b)Chứng minh rằng AH/AD+BH/BE+Ch/CF=2
c)AD/HD+BE/HE+CF/HF>=9
d)Đường thăng qua A vuông góc È cắt HM ở K(M là trung điểm của BC)
CHuwngsminh K đối xứng với H qua M
Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O), các đường cao AD, BE, CF cắt nhau tại H, AH cắt EF tại K. Gọi I là trung điểm AH
1) Gọi M là trung điểm BC, kẻ đường kính AP. Chứng minh M là trung điểm của HP.
2) Chứng minh BH/BA + CH/CA = EF/KA.
3) Gọi S là giao điểm của hai đường thắng OI và MK. Chứng minh AS song song với BC.
1: góc ABP=1/2*sđ cung AP=90 độ
=>BP//CH
góc ACP=1/2*sđ cung AP=90 độ
=>CP//BH
mà BP//CH
nên BHCP là hình bình hành
=>BC cắt HP tại trung điểm của mỗi đường
=>M là trung điểm của HP
Cho tam giác ABC nhọn (AB<AC), ba đường cao AD,BE,CF cắt nhau tại H. Kéo dài EF và BC cắt ngay tại I. Gọi M là trung điểm BC. A. Chứng minh: IE.IF=IM^2-(BC^2/4)
B. Gọi N là trung điểm AH. Chứng minh MN vuông góc EF