1)
Cho tam giác ABC có ba góc nhọn, vẽ hai đường cao AD và BE cắt nhau tại H. Cho biết góc ACB = 50 độ.
a) Chứng minh CH vuông góc AB
b) Tính góc BHD và góc DHE?
2)
Bài 1: Cho tam giác ABC cân tại A. Vẽ AH vuông góc với BC tại H, có AB = 5cm, BC = 6cm.
1) Chứng minh hai tam giác ABH và ACH bằng nhau
2) Tìm độ dài đoạn AH?
c) Hãy cho biết trong tam giác trên AH là đường nào trong các đường sau: đường trung tuyến, đường cao, đường phân giác, đường trung trực?
Bài 1 : Cho tam giác ABC có 3 đường trung tuyến AD , BE , CF cắt nhau tại G . Chứng minh rằng
\(a, \frac {AB+AC}{2}\)
\(b,BE+CF < \frac{3}{2}BC\)
\(c, \frac{3}{4}(AB+BC+AC)<AD+BE+CF<AB+BC+AC\)
Bài 2 : Cho tam giác ABC , tia phân giác góc B , C cắt nhau tại O . Từ A vẽ một đường thẳng vuông góc với OA , cắt OB , OC tại M,N . Chứng minh : BM vuông góc với BN . CM vuông góc với CN
Bài 3 . Cho tam giác ABC , góc B = 450 , đường cao AH , phân giác BD của tam giác ABC , biết góc BDA = 450 . Chứng minh HD//AB
Bài 4 . Cho tam giác ABC không vuông , các đường trung trực của AB , AC cắt nhau tại O , cắt BC theo thứ tự M,N . Chứng minh AO là phân giác của góc MAN .
Bài 5 : Cho tam giác ABC nhọn , đường cao BD , CE cắt nhau tại H . Lấy K sao cho AB là trung trực của HK . Chứng minh góc KAB = góc KCB
cho tam giác ABC cân tại A, có góc A là góc nhọn. Vẽ hai đường cao AD và BE cắt nhau tại H (D thuộc BC, E thuộc AC).
a) chứng minh tam giác ABC = tam giác ACD
b) đường thẳng CH cắt AB tại F. Chứng minh CF là đường cao của tam giác ABC
c) chứng minh EF //BC
: Cho tam giác ABC nhọn có AB < AC, ba đường cao AD, BE, CF cắt nhau tại H. Chứng minh rằng H cách đều ba cạnh của tam giác DEF.
Cho tam giác nhọn ABC có AD và BE là hai đường cao cắt nhau tại H.
a) Cho biết góc ABC > góc ACB. Chứng minh rằng HC > HB
b) Vẽ HF vuông góc AB tại F. Chứng minh rằng ba điểm C, H, F thẳng hàng
c) Chứng minh rằng AB + AC > 2AD
d) Chứng minh rằng HA + HB + HC < 2/3 ( AB + AC + BC )
AI GIẢI NHANH VÀ ĐÚNG MIK SẼ TICK
Bài tập:
Bài 1: Cho D ABC cân tại A. Vẽ AH vuông góc với BC tại H, có AB = 5cm, BC = 6cm.
1) Chứng minh hai tam giác ABH và ACH bằng nhau
2) Tìm độ dài đoạn AH?
c) Hãy cho biết trong tam giác trên AH là đường nào trong các đường sau: đường trung tuyến, đường cao, đường phân giác, đường trung trực?
Bài 2: Cho tam giác ABC cân tại A, gọi H là trung điểm của cạnh BC. Từ H vẽ HM vuông góc AB tại M, HN vuông AC tại N.
a) Chứng minh hai tam giác ABH và ACH bằng nhau
b) Chứng minh HM = HN
c) Chứng minh AM = AN
d) AH có là đường trung trực của tam giác ABC hay không? Vì sao?
Bài 3: Cho tam giác ABC có ba góc nhọn, vẽ hai đường cao AD và BE cắt nhau tại H. Cho biết góc ACB = 50 độ.
a) Chứng minh CH vuông góc AB
b) Tính góc BHD và góc DHE?
Bài 4: Cho tam giác ABC vuông tại A, BD là tia phân giác của góc B, trên tia BC lấy điểm E sao cho BA = BE, gọi H là giao điểm của AB với DE.
a) Chứng minh DE vuông góc BE
b) Chứng minh BD là đường trung trực của AE
c) Chứng minh AE song song với HC.
Làm giúp em câu b với ạ Câu 16: Cho tam giác ABC cân tại A, đường cao BM, đường cao CN cắt nhau tại H. a) Chứng minh rằng: AH vuông góc với BC b) AH cắt BC tại I; E là trung điểm CH. Chứng minh rằng BE > 3/4 BC
cho tam giác ABC cân tại A có \(\widehat{A}\)là góc nhọn. Vẽ 2 đương cao AD và BE cắt nhau tại H (D\(\in BC\), E\(\in AC\))
a) Chứng minh tam giác ABD= tam giac ACD
b) dường thẳng CH cắt nhau tại F. chưng minh CF là đường cao của tam giác ABC
c) C/m EF sông song BC
1) Cho tam giác ABC có AB>AC, đường cao AH.
a) Chứng minh rằng AB^2 - AC^2=BH^2 - CH^2
b) Lấy điểm m thuộc đường cao AH. CMR: AB^2 - AC^2= BM^2 - CM^2
5) Cho tam giác ABC. Các tia phân giác của các góc ngoài tại đỉnh B và C cắt nhau ở K. Đường vuông góc với AK tại K, cắt đường thẳng AB, AC ở D và E. Chứng minh rằngtam giác ADE là tam giác cân.