a+b=5
b+c=10
a+c=7
Tim so a,b,c .
tim a b c biet
10a=15b=6c va 10a-5b+c=25
\(10a=15b=6c\)
\(\Rightarrow\frac{10a}{1}=\frac{5b}{\frac{1}{3}}=\frac{c}{\frac{1}{6}}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{10a}{1}=\frac{5b}{\frac{1}{3}}=\frac{c}{\frac{1}{6}}=\frac{10a-5b+c}{1-\frac{1}{3}+\frac{1}{6}}=\frac{25}{\frac{5}{6}}=30\)
\(\Rightarrow\hept{\begin{cases}a=30:10=3\\b=10:5=2\\c=30:6=5\end{cases}}\)
Vậy a = 3, b = 2, c = 5
#)Giải :
Ta có : \(10a=15b\Rightarrow\frac{a}{15}=\frac{b}{10}\Rightarrow\frac{a}{90}=\frac{b}{60}\)
\(15b=6c\Rightarrow\frac{b}{6}=\frac{c}{15}\Rightarrow\frac{b}{60}=\frac{c}{150}\)
\(\Rightarrow\frac{a}{90}=\frac{b}{60}=\frac{c}{150}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{a}{90}=\frac{b}{60}=\frac{c}{150}=\frac{10a-5b+c}{900-300+150}=\frac{25}{750}=\frac{1}{30}\)
\(\Rightarrow\frac{a}{90}=\frac{1}{30}\Rightarrow a=3\)
\(\Rightarrow\frac{b}{60}=\frac{1}{30}\Rightarrow b=2\)
\(\Rightarrow\frac{c}{150}=\frac{1}{30}\Rightarrow c=5\)
a. Cho a+5b chia hết cho 17. cmr: 10a-b chia hết cho 17
b. a+4b chia hết cho 13 .cmr: 10a +b chia hết ch 13.
c. 10a +b chia hết cho 13. cmr: a+4b chia hết cho 13
(10a+5b+3)(10a+8a+b)=231
Với \(a\ne0\)
+TH1:a lẻ
=>10a chẵn ;10a chẵn ;8a chẵn
+TH1:a chẵn
=>10a chẵn ;10a chẵn ;8a chẵn
Vậy với \(\forall a\ne0\) thì 10a chẵn ;10a chẵn ;8a chẵn
Với b lẻ
=>5b lẻ
=>5b+3 chẵn
=>10a+5b+3 chẵn
=>(10a+5b+3)(10a+8a+b) chẵn hay 231 chẵn (vô lý)
+TH2: a = 0
=>10a =10.0= 0 ;10a =100= 1 ;8a =8.0=0
=>(10a+5b+3)(10a+8a+b)=(0+5b+3)(1+0+b)=(5b+3)(1+b)=231=11*21=3*77=7*33=1*21
Ta có 5b+3 > b+1 (vì b là số tự nhiên)
Với b+1=1
=> b=0
=>5b+3=5.0+3=3\(\ne\)21(loại)
Với b+1=3
=> b=2
=>5b+3=5.2+3=13\(\ne\)77 (loại)
Với b+1=7
=> b=6
=>5b+3=5.6+3=33 (chọn)
Với b+1=11
=> b=10
=>5b+3=5.10+3=53\(\ne\)21 (loại)
Vậy với a=0 ;b=6 thì (10a+5b+3)(10a+8a+b)=231
tôi tạo câu hỏi này để vui thôi,đề nghị không vô ném đá,chỉ dảnh cho những ai chưa biết làm
Tìm các giá trị a,b,c biết :
a, \(2a=-3b\) và \(-3a+b\)
b, \(4a=7b,5b=8c\) và \(10a-5b+c=100\)
Câu a thiếu đề nhé, -3a+b= bao nhiêu thế bạn?
b/ Theo đề ta có:
\(\frac{a}{7}=\frac{b}{4}\Rightarrow\frac{a}{14}=\frac{b}{8}\); \(\frac{b}{8}=\frac{c}{5}\)
=> \(\frac{a}{14}=\frac{b}{8}=\frac{c}{5}\)
a/d tính chất của dãy tỉ số = nhau ta có:
\(\frac{a}{14}=\frac{b}{8}=\frac{c}{5}=\frac{10a}{140}=\frac{5b}{40}=\frac{c}{5}=\frac{10a-5b+c}{140-40+5}=\frac{100}{105}=\frac{20}{21}\)
=> \(\left\{{}\begin{matrix}a=\frac{20}{21}\cdot14=\frac{40}{3}\\b=\frac{20}{21}\cdot8=\frac{160}{21}\\c=\frac{20}{21}\cdot5=\frac{100}{21}\end{matrix}\right.\)
vậy...
Cho. a-5b chia het cho 17. C M 10a+b chia het cho 17. Voi a; b thuoc N
Cho a+5b chia hết cho 7.C hứng minh 10a+b cũng chia hết cho 7
a+5b ⋮ 7
=> 3(a+5b) ⋮7
=> 3a+15b⋮7
=> 3a+15b +7a -14b⋮7
=> 10a+b⋮7
Câu trả lời hay nhất: + ta chứng minh a,b,c có ít nhất một số chia hết cho 3
giả sử cả 3 số trên đều không chia hết cho 3
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1)
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn
Vậy có ít nhất 1 số chia hết cho 3
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn
vậy có ít nhất 1 số cgia hết cho 4
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5)
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3
=> phải có ít nhất 1 số chia hết cho 5
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60
a+5b ⋮ 7
=> 3(a+5b) ⋮7
=> 3a+15b⋮7
=> 3a+15b +7a -14b⋮7
=> 10a+b⋮7
Rút gọn biểu thức \(A=\dfrac{ab+10b+25}{ab+5a+5b+25}+\dfrac{bc+10c+25}{bc+5b+5c+25}+\dfrac{ca+10a+25}{ac+5a+5c+25}\) với a, b, c khác 5
\(A=\dfrac{ab+10b+25}{ab+5a+5b+25}+\dfrac{bc+10c+25}{bc+5b+5c+25}+\dfrac{ca+10a+25}{ac+5a+5c+25}\)
\(=\dfrac{\left(ab+5b\right)+\left(5b+25\right)}{\left(ab+5a\right)+\left(5b+25\right)}+\dfrac{\left(bc+5c\right)+\left(5c+25\right)}{\left(bc+5b\right)+\left(5c+25\right)}+\dfrac{\left(ca+5a\right)+\left(5a+25\right)}{\left(ac+5a\right)+\left(5c+25\right)}\)
\(=\dfrac{b\left(a+5\right)+5\left(b+5\right)}{a\left(b+5\right)+5\left(b+5\right)}+\dfrac{c\left(b+5\right)+5\left(c+5\right)}{b\left(c+5\right)+5\left(c+5\right)}+\dfrac{a\left(c+5\right)+5\left(a+5\right)}{a\left(c+5\right)+5\left(c+5\right)}\)
\(=\dfrac{b\left(a+5\right)+5\left(b+5\right)}{\left(a+5\right)\left(b+5\right)}+\dfrac{c\left(b+5\right)+5\left(c+5\right)}{\left(b+5\right)\left(c+5\right)}+\dfrac{a\left(c+5\right)+5\left(a+5\right)}{\left(a+5\right)\left(c+5\right)}\)
\(=\dfrac{b}{b+5}+\dfrac{5}{a+5}+\dfrac{c}{c+5}+\dfrac{5}{b+5}+\dfrac{a}{a+5}+\dfrac{5}{c+5}\)
\(=\left(\dfrac{b}{b+5}+\dfrac{5}{b+5}\right)+\left(\dfrac{a}{a+5}+\dfrac{5}{a+5}\right)+\left(\dfrac{c}{c+5}+\dfrac{5}{c+5}\right)\)
\(=1+1+1=3\) (\(a;b;c\ne-5\))
\(A=\dfrac{ab+5b+5b+25}{a\left(b+5\right)+5\left(b+5\right)}+\dfrac{bc+5c+5c+25}{b\left(c+5\right)+5\left(c+5\right)}+\dfrac{ca+5a+5a+25}{a\left(c+5\right)+5\left(c+5\right)}\)
\(A=\dfrac{b\left(a+5\right)+5\left(b+5\right)}{\left(a+5\right)\left(b+5\right)}+\dfrac{c\left(b+5\right)+5\left(c+5\right)}{\left(b+5\right)\left(c+5\right)}+\dfrac{a\left(c+5\right)+5\left(a+5\right)}{\left(a+5\right)\left(c+5\right)}\)
\(A=\dfrac{b}{b+5}+\dfrac{5}{a+5}+\dfrac{c}{c+5}+\dfrac{5}{b+5}+\dfrac{a}{a+5}+\dfrac{5}{c+5}\)
\(A=\dfrac{a+5}{a+5}+\dfrac{b+5}{b+5}+\dfrac{c+5}{c+5}=1+1+1=3\)
Chứng tỏ với mọi a, b thuộc N ta có:
Nếu cho ( a+5b) chia hết cho 7 thì (10a+b) chia hết cho 7
Câu hỏi của NGUYỄN MINH ÁNH - Toán lớp 6 - Học toán với OnlineMath
cho a+ 5b chia hết cho 7 ( a ,b thuộc N ) . Chứng minh 10a + b chia hết cho 7 . Mệnh đề đảo lại có đúng ko
Ta có
a+5b chia hết cho 7
=> 10a+50b \(⋮7\)
\(10a+b+49b⋮7\)
mà \(49b⋮7\)(do 49 chia hết cho 7)
=> 10a+b chia hết cho 7
Vì a + 5b ⋮ 7 ⇒ 4 . (a + 5b) ⋮ 7 ⇒ 4a + 20b ⋮ 7)
Xét tổng :
(4a + 20b) + (10a + b)
= 4a + 20b + 10a + b
= (4a + 10a) + (20b + b)
= 14a + 21b
= (2a + 3b) . 7 ⋮ 7
⇒ (4a + 20b) + (10a + b) ⋮ 7 (1)
Mà 4a + 20b ⋮ 7 (2)
Từ (1) và (2) ⇒ 10a + b ⋮ 7 (đpcm)
Vậy 10a + b ⋮ 7
Câu hỏi của NGUYỄN MINH ÁNH - Toán lớp 6 - Học toán với OnlineMath
cho hai so a,b sao cho 10a^2 -3b^2+5ab=0 khi do gia tri bieu thuc A=2a-b/3a-b+5b-a/3a+b