Những câu hỏi liên quan
NV
Xem chi tiết
NT
5 tháng 1 2022 lúc 21:37

\(\Leftrightarrow n^3+n^2-n^2-n-2n-2+6⋮n+1\)

\(\Leftrightarrow n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

hay \(n\in\left\{0;-2;1;-3;2;-4;5;-7\right\}\)

Bình luận (0)
MM
Xem chi tiết
NT
8 tháng 1 2024 lúc 17:30

a: \(n^3-2⋮n-2\)

=>\(n^3-8+6⋮n-2\)

=>\(6⋮n-2\)

=>\(n-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

=>\(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)

b: \(n^3-3n^2-3n-1⋮n^2+n+1\)

=>\(n^3+n^2+n-4n^2-4n-4+3⋮n^2+n+1\)

=>\(3⋮n^2+n+1\)

=>\(n^2+n+1\in\left\{1;-1;3;-3\right\}\)

mà \(n^2+n+1=\left(n+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\forall n\)

nên \(n^2+n+1\in\left\{1;3\right\}\)

=>\(\left[{}\begin{matrix}n^2+n+1=1\\n^2+n+1=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n^2+n=0\\n^2+n-2=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}n\left(n+1\right)=0\\\left(n+2\right)\left(n-1\right)=0\end{matrix}\right.\Leftrightarrow n\in\left\{0;-1;-2;1\right\}\)

Bình luận (0)
CL
Xem chi tiết
LP
Xem chi tiết
KF
10 tháng 5 2015 lúc 14:19

A=\(\frac{3n+4}{n-1}\)=\(\frac{3\left(n-1\right)+7}{n-1}\)=3+\(\frac{7}{n-1}\)

Để A nghuyên thì \(\frac{7}{n-1}\)nguyên => n-1 \(\in\)ƯC(7)=\(\left\{1;-1;7;-7\right\}\)

=>n\(\in\)\(\left\{2;0;8;-6\right\}\)

 

B=\(\frac{6n-3}{3n+1}\)=\(\frac{2\left(3n+1\right)-5}{3n+1}\)=2+\(\frac{-5}{3n+1}\)

=>3n+1\(\in\)ƯC(-5)=\(\left\{-1;1;-5;5\right\}\)

=>n\(\in\)\(\left\{0;-2\right\}\)

Bình luận (0)
MR
Xem chi tiết
TD
Xem chi tiết
NP
1 tháng 7 2021 lúc 7:39

Để `3n+4/n-1∈ZZ`

3n+4⋮n−13n+4⋮n-1

⇒(3n−3)+7⋮n−1⇒(3n-3)+7⋮n-1

⇒3(n−1)+7⋮n−1⇒3(n-1)+7⋮n-1

Vì 3(n−1)⋮n−13(n-1)⋮n-1

⇒7⋮n−1⇒7⋮n-1

⇒n−1∈Ư(7)={±1;±7}⇒n-1∈Ư(7)={±1;±7}

⇒n∈{0;2;−6;8}⇒n∈{0;2;-6;8}

Vậy 3n+4n−1∈Z3n+4n-1∈ℤ khi n∈{0;2;−6;8}

Bình luận (0)

Giải:

Để \(A=\dfrac{3n+4}{n-1}\) là số nguyên thì \(3n+4⋮n-1\) 

\(3n+4⋮n-1\) 

\(\Rightarrow3n-3+7⋮n-1\)

\(\Rightarrow7⋮n-1\) 

\(\Rightarrow n-1\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\) 

Ta có bảng giá trị:

n-1-7-117
n-6028

Vậy \(n\in\left\{-6;0;2;8\right\}\)

Chúc bạn học tốt!

Bình luận (0)
HQ
Xem chi tiết
XO
11 tháng 8 2019 lúc 14:39

a) Để A là phân số

\(\Rightarrow n-1\ne0\)

\(\Rightarrow n\ne1\)

=> A là phân số khi \(n\ne1\)

b) Vì \(n\inℤ\)

\(\hept{\begin{cases}3n+4\inℤ\\n-1\inℤ\end{cases}}\)

mà \(A\inℤ\Leftrightarrow3n+4⋮n-1\)

\(\Rightarrow3n-3+7⋮n-1\)

\(\Rightarrow3\left(n-1\right)+7⋮n-1\)

Vì \(3\left(n-1\right)⋮n-1\)

nên \(7⋮n-1\)

\(\Rightarrow n-1\inƯ\left(7\right)\)

\(\Rightarrow n-1\in\left\{\pm1;\pm7\right\}\)

Lập bảng xét 4 trường hợp ta có : 

\(n-1\)\(1\)\(-1\)\(7\)\(-7\)
\(n\)\(2\)\(0\)\(8\)\(-6\)

Vậy \(n\in\left\{2;0;8;-6\right\}\)

Bình luận (0)
H24
Xem chi tiết
H24
9 tháng 4 2021 lúc 12:59

undefined

Bình luận (0)
H24
9 tháng 4 2021 lúc 17:01

`P=n^3-n^2+n-1`

`=n^2(n-1)+(n-1)`

`=(n-1)(n^2+1)`

Vì n là stn thì p là snt khi

`n-1=1=>n=2`

Vậy n=2

Bình luận (0)
BT
Xem chi tiết
NT
4 tháng 9 2023 lúc 20:16

11:

n^3-n^2+2n+7 chia hết cho n^2+1

=>n^3+n-n^2-1+n+8 chia hết cho n^2+1

=>n+8 chia hết cho n^2+1

=>(n+8)(n-8) chia hết cho n^2+1

=>n^2-64 chia hết cho n^2+1

=>n^2+1-65 chia hết cho n^2+1

=>n^2+1 thuộc Ư(65)

=>n^2+1 thuộc {1;5;13;65}

=>n^2 thuộc {0;4;12;64}

mà n là số tự nhiên

nên n thuộc {0;2;8}

Thử lại, ta sẽ thấy n=8 không thỏa mãn

=>\(n\in\left\{0;2\right\}\)

Bình luận (1)