H24
Xem chi tiết
H24
14 tháng 7 2020 lúc 19:47

Câu a mình làm đc r, nhờ m.n làm hộ mình câu b và ý nhỏ này nx nhé, cũng nằm trong bài.

c) Tìm \(x\in Z\) để hàm số y=f(x) đạt GTNN? Tính giá trị đó.

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
HM
22 tháng 9 2023 lúc 12:16

a) • \(y = f\left( x \right) = \frac{1}{{x - 1}}\)

ĐKXĐ: \(x - 1 \ne 0 \Leftrightarrow x \ne 1\)

Vậy hàm số có tập xác định: \(D = \mathbb{R}\backslash \left\{ 1 \right\}\).

• \(y = g\left( x \right) = \sqrt {4 - x} \)

ĐKXĐ: \(4 - x \ge 0 \Leftrightarrow x \le 4\)

Vậy hàm số có tập xác định: \(D = \left( { - \infty ;4} \right]\).

b) • Với mọi \({x_0} \in \left( { - \infty ;1} \right)\), ta có:

\(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{1}{{x - 1}} = \frac{{\mathop {\lim }\limits_{x \to {x_0}} 1}}{{\mathop {\lim }\limits_{x \to {x_0}} x - \mathop {\lim }\limits_{x \to {x_0}} 1}} = \frac{1}{{{x_0} - 1}} = f\left( {{x_0}} \right)\)

Vậy hàm số \(y = f\left( x \right)\) liên tục tại mọi điểm \({x_0} \in \left( { - \infty ;1} \right)\).

Tương tự ta có hàm số \(y = f\left( x \right)\) liên tục tại mọi điểm \({x_0} \in \left( {1; + \infty } \right)\).

Ta có: Hàm số không xác định tại điểm \({x_0} = 1\)

\(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \frac{1}{{x - 1}} =  + \infty ;\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \frac{1}{{x - 1}} =  - \infty \)

Vì \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) \ne \mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right)\) nên không tồn tại \(\mathop {\lim }\limits_{x \to 1} f\left( x \right)\).

Vậy hàm số \(y = f\left( x \right)\) không liên tục tại điểm \({x_0} = 1\).

• Với mọi \({x_0} \in \left( { - \infty ;4} \right)\), ta có:

\(\mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) = \mathop {\lim }\limits_{x \to {x_0}} \sqrt {4 - x}  = \sqrt {\mathop {\lim }\limits_{x \to {x_0}} 4 - \mathop {\lim }\limits_{x \to {x_0}} x}  = \sqrt {4 - {x_0}}  = g\left( {{x_0}} \right)\)

Vậy hàm số \(y = g\left( x \right)\) liên tục tại mọi điểm \({x_0} \in \left( { - \infty ;4} \right)\).

Ta có: \(g\left( 4 \right) = \sqrt {4 - 4}  = 0\)

\(\mathop {\lim }\limits_{x \to {4^ - }} g\left( x \right) = \mathop {\lim }\limits_{x \to {4^ - }} \sqrt {4 - x}  = \sqrt {\mathop {\lim }\limits_{x \to {4^ - }} 4 - \mathop {\lim }\limits_{x \to {4^ - }} x}  = \sqrt {4 - 4}  = 0 = g\left( 4 \right)\)

Vậy hàm số \(y = g\left( x \right)\) liên tục tại điểm \({x_0} = 4\).

Hàm số không xác định tại mọi \({x_0} \in \left( {4; + \infty } \right)\) nên hàm số \(y = g\left( x \right)\) không liên tục tại mọi điểm \({x_0} \in \left( {4; + \infty } \right)\).

Vậy hàm số \(y = g\left( x \right)\) liên tục trên nửa khoảng \(\left( { - \infty ;4} \right]\).

Bình luận (0)
PO
Xem chi tiết
NT
10 tháng 5 2022 lúc 19:13

Chọn B

Bình luận (0)
QL
Xem chi tiết
HM
21 tháng 9 2023 lúc 22:50

a) Tập xác định của hàm số đã cho là: \({D_f} = \mathbb{R};\;{D_g} = \mathbb{R}\)

b) Ta có: \(f\left( { - x} \right) = {\left( { - x} \right)^2} = {x^2} = f\left( x \right)\)

Đồ thị của hàm số \(y = f\left( x \right) = {x^2}\) đối xứng qua trục tung

c) Ta có: \(g\left( { - x} \right) = {\left( { - x} \right)^3} =  - {x^3} =  - g\left( x \right)\)

Đồ thị của hàm số \(y = g\left( x \right) = {x^3}\) đối xứng qua gốc tọa độ

Bình luận (0)
H24
Xem chi tiết
HP
27 tháng 1 2021 lúc 19:28

\(f\left(20\right)=f\left(1\right)+f\left(19\right)+3\left(4.1.19-1\right)=f\left(19\right)+12.19-3\)

\(f\left(19\right)=f\left(18\right)+12.18-3\)

\(f\left(18\right)=f\left(17\right)+12.17-3\)

.....

\(f\left(3\right)=f\left(2\right)+12.2-3\)

\(f\left(2\right)=f\left(1\right)+12-3\)

Cộng vế theo vế các đẳng thức trên:

\(f\left(2\right)+f\left(3\right)+...+f\left(20\right)=f\left(1\right)+f\left(2\right)+...+f\left(19\right)+12\left(1+2+...+19\right)-3.20\)

\(\Leftrightarrow f\left(20\right)=2220\)

Đoạn này bạn tính kĩ một chút nha, mình tính không biết có sai không.

Bình luận (0)
VG
Xem chi tiết
NL
13 tháng 1 2021 lúc 21:56

\(f\left(x_1\right)=ax_1\) ; \(f\left(x_2\right)=ax_2\) ; \(f\left(x_1x_2\right)=ax_1x_2\)

Để \(f\left(x_1\right)f\left(x_2\right)=f\left(x_1x_2\right)\)

\(\Leftrightarrow ax_1.ax_2=ax_1x_2\)

\(\Leftrightarrow a^2x_1x_2=ax_1x_2\)

\(\Leftrightarrow a^2=a\)

\(\Leftrightarrow\left[{}\begin{matrix}a=0\left(loại\right)\\a=1\end{matrix}\right.\)

Vậy \(a=1\)

Bình luận (0)
LY
Xem chi tiết
NL
6 tháng 3 2021 lúc 0:06

a.

\(\Leftrightarrow x^2+2\left(m-1\right)x+m^2+3m+5\ne0\) ; \(\forall x\)

\(\Leftrightarrow\Delta'=\left(m-1\right)^2-\left(m^2+3m+5\right)< 0\)

\(\Leftrightarrow-5m-4< 0\)

\(\Leftrightarrow m>-\dfrac{4}{5}\)

b. 

\(\Leftrightarrow x^2+2\left(m-1\right)x+m^2+m-6\ge0\) ;\(\forall x\)

\(\Leftrightarrow\Delta'=\left(m-1\right)^2-\left(m^2+m-6\right)\le0\)

\(\Leftrightarrow-3m+7\le0\)

\(\Rightarrow m\ge\dfrac{7}{3}\)

c.

\(x^2-2\left(m+3\right)x+m+9>0\) ;\(\forall x\)

\(\Leftrightarrow\Delta'=\left(m+3\right)^2-\left(m+9\right)< 0\)

\(\Leftrightarrow m^2+5m< 0\Rightarrow-5< m< 0\)

Bình luận (1)
PA
Xem chi tiết
NT
1 tháng 2 2022 lúc 1:07

a: ĐKXĐ: (x+4)(x-1)<>0

hay \(x\notin\left\{-4;1\right\}\)

b: \(y-3=\dfrac{2x^2+6\sqrt{\left(x^2+1\right)\left(x-2\right)}+5-3x^2-9x+12}{x^2+3x-4}\)

\(=\dfrac{-x^2-9x+17+6\sqrt{\left(x^2+1\right)\left(x-2\right)}}{x^2+3x-4}< =0\)

=>y<=3

Bình luận (0)
VG
Xem chi tiết
TH
17 tháng 1 2021 lúc 23:11

f(0) = 1

\(\Rightarrow\) a.02 + b.0 + c = 1 

\(\Rightarrow\) c = 1

Vậy hệ số a = 0; b = 0; c = 1

f(1) = 2

\(\Rightarrow\) a.12 + b.1 + c = 2

\(\Rightarrow\) a + b + c = 2

Vậy hệ số a = 1; b = 1; c = 1

f(2) = 4

\(\Rightarrow\) a.22 + b.2 + c = 4

\(\Rightarrow\) 4a + 2b + c = 4

Vậy hệ số a = 4; b = 2; c = 1

Chúc bn học tốt! (chắc vậy :D)

 

Bình luận (0)
H24
Xem chi tiết
HP
26 tháng 9 2021 lúc 21:24

Hàm số xác định khi: \(\left\{{}\begin{matrix}4\pi^2-x^2\ge0\\cosx\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2\pi\le x\le2\pi\\x\ne\dfrac{\pi}{2}+k\pi\end{matrix}\right.\)

Bình luận (2)