A=(x/x^2-4+1/x-2)x^2-4/x+3 (ĐK:x khác -2;x khác 2;x khác -3
a)Chứng minh A=2x+2/x+3
b)Tìm giá trị nguyên của x để biểu thức A có giá trị nguyên
\(A=\left(\dfrac{x+2}{x-\sqrt{x}-2}-\dfrac{2\sqrt{x}}{\sqrt{x}+1}-\dfrac{1-\sqrt{x}}{\sqrt{x}-2}\right)\left(1-\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\right)\)đk:x>=0;x khác 4. rút gọn biểu thức A
\(A=\left(\dfrac{x+2}{x-\sqrt{x}-2}-\dfrac{2\sqrt{x}}{\sqrt{x}+1}-\dfrac{1-\sqrt{x}}{\sqrt{x}-2}\right)\left(1-\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\right)\\ =\left(\dfrac{x+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}-\dfrac{2\sqrt{x}}{\sqrt{x}+1}-\dfrac{1-\sqrt{x}}{\sqrt{x}-2}\right)\left(\dfrac{\sqrt{x}-2}{\sqrt{x}-2}-\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\right)\\ =\left(\dfrac{x+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}-\dfrac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}-\dfrac{\left(1-\sqrt{x}\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\right)\cdot\dfrac{\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-2}\\ =\dfrac{x+2-\left(2x-4\sqrt{x}\right)-\left(\sqrt{x}+1-x-\sqrt{x}\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{1}{\sqrt{x}-2}\)
\(=\dfrac{x+2-2x+4\sqrt{x}-\sqrt{x}-1+x+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{1}{\sqrt{x}-2}\\ =\dfrac{4\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{1}{\sqrt{x}-2}\\ =\dfrac{4\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)^2}\)
\(A=\left(\dfrac{x+2}{x-\sqrt{x}-2}-\dfrac{2\sqrt{x}}{\sqrt{x}+1}-\dfrac{1-\sqrt{x}}{\sqrt{x}-2}\right)\left(1-\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\right)\)
\(A=\left[\dfrac{x+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}-\dfrac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}-\dfrac{\left(1-\sqrt{x}\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\right]\left(\dfrac{\sqrt{x}-2}{\sqrt{x}-2}-\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\right)\)
\(A=\dfrac{x+2-2x+4\sqrt{x}+x-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-2}\)
\(A=\dfrac{4\sqrt{x}+1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{1}{\sqrt{x}-2}\)
\(A=\dfrac{4\sqrt{x}+1}{\left(\sqrt{x}-2\right)^2\left(\sqrt{x}+1\right)}\)
\(A=\left(\dfrac{x+2}{x-\sqrt{x}-2}-\dfrac{2\sqrt{x}}{\sqrt{x}+1}-\dfrac{1-\sqrt{x}}{\sqrt{x}-2}\right)\left(1-\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\right)\)đk:x>=0;x khác 4). rút gọn biểu thức A
\(A=\left(\dfrac{x+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}-\dfrac{2\sqrt{x}}{\sqrt{x}+1}+\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\right)\cdot\dfrac{\sqrt{x}+2-\sqrt{x}+3}{\sqrt{x}+2}\)
\(=\dfrac{x+2-2x+4\sqrt{x}+x-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{5}{\sqrt{x}+2}\)
\(=\dfrac{5\left(4\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}\)
cho B= x+2/4 Đk:x khác 6 và -6
tìm x khi B>0
Để B>0 thì x+2>0
hay x>-2
A=(x/x^2-4+1/x+2-4/x-2):(1-x/x-2) ĐK:x#2,+-2
A) rút gọn A
B) tính giá trị A tại x=-1/2
C) tính giá trị nguyên của x để A nguyên
Cho biểu thức A=\(\left(\frac{4x}{x^2-4}+\frac{2x-4}{x+2}\right).\frac{x+2}{2x}+\frac{2}{2-x}\)
a)Rút gọn biểu thức A
b)Tính giá trị của biếu thức A với x=4
c)tìm giá trị nguyên của x để biểu thức A nhận giá trị nguyên
đk:x khác 0,+-2,2
\(A=\left(\sqrt{x}+2\right):\left(\frac{x+8}{x\sqrt{x}+8}+\frac{\sqrt{x}}{x-2\sqrt{x}+4}-\frac{1}{2+\sqrt{x}}\right)ĐK:x\ge0.\)
Giúp mk bài này vs làm ko ra
\(A=\left(\sqrt{x}+2\right):\left(\frac{x+8}{x\sqrt{x}+8}+\frac{\sqrt{x}}{x-2\sqrt{x}+4}-\frac{1}{2+\sqrt{x}}\right)\)
\(=\left(\sqrt{x}+2\right):\left(\frac{x+8+\sqrt{x}\left(\sqrt{x}+2\right)-\left(x-2\sqrt{x}+4\right)}{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}\right)\)
\(=\left(\sqrt{x}+2\right):\left(\frac{x+8+x+2\sqrt{x}-x+2\sqrt{x}-4}{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}\right)\)
\(=\left(\sqrt{x}+2\right):\left(\frac{x+4\sqrt{x}+4}{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}\right)\)
\(=\left(\sqrt{x}+2\right):\left[\frac{\left(\sqrt{x}+2\right)^2}{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}\right]\)
\(=\left(\sqrt{x}+2\right):\frac{\sqrt{x}+2}{x-2\sqrt{x}+4}\)
\(=\frac{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}{\sqrt{x}+2}\)
\(=x-2\sqrt{x}+4\)
=.= hok tốt!!
Tìm x trong tỉ lệ thức :
a) x+2/5=1/x-2 (x khác 2 )
b) 3/x-4=x+4/3 (x khác 4 )
c) x+2/2=1/1-x (x khác 1 )
a, \(\frac{x+2}{5}=\frac{1}{x-2}\Rightarrow\left(x+2\right)\left(x-2\right)=5\Rightarrow x^2-2x+2x-4=5\Rightarrow x^2=9\Rightarrow x=\pm3\)
b, \(\frac{3}{x-4}=\frac{x+4}{3}\Rightarrow\left(x+4\right)\left(x-4\right)=9\Rightarrow x^2-4x+4x-16=9\Rightarrow x^2=25\Rightarrow x=\pm5\)
c, \(\frac{x+2}{2}=\frac{1}{1-x}\Rightarrow\left(x+2\right)\left(1-x\right)=2\Rightarrow x-x^2+2-2x=2\Rightarrow-x^2-x=0\Rightarrow-x\left(x+1\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)
A=\(\frac{\sqrt{x}+1}{x-2\sqrt{x}}-\frac{1}{\sqrt{x}-2}).(x-3\sqrt{x}+2\))
Đk:x>0,x\(\ne\)4
a,Rút gọn A
b,Tìm x để A<\(\frac{1}{2}\)
c,Tìm các giá trị nguyên của x để A có giá trị nguyên
Bài 1:thực hiện các phân thức sau a)2x/(x^2+2xy)+y/(xy-2y^2)+4/(x^2-4y^2) với x khác 0; x khác 2y b)2/(x+2)+4/(x-2)+(5x+2)/(4-x^2) với x khác +-2 c)x/(x-2y)+x/(x+2y)-4xy/(4y^2-x^2) với y khác +-2x d)(3x^2-x)/(x-1)+(x+2)/(1-x)+(3-2x^2)/(x-1) với x khác 1