Những câu hỏi liên quan
SS
Xem chi tiết
H24
24 tháng 12 2022 lúc 20:48

\(\left(0.25\right)^{10}.4^{10}+\sqrt{5^2-3^2}\)
\(=0.4^{10}+\sqrt{25-9}\)
\(=0+\sqrt{16}=0+4=4\)

\(\dfrac{5}{20}+\dfrac{18}{11}-25\%-\left(\dfrac{18}{11}-\dfrac{4}{9}\right)\)
\(=\dfrac{5}{20}+\dfrac{18}{11}-\dfrac{1}{4}-\dfrac{18}{11}+\dfrac{4}{9}\)
\(=\left(\dfrac{5}{20}-\dfrac{1}{4}\right)+\left(\dfrac{18}{11}-\dfrac{18}{11}\right)+\dfrac{4}{9}\)
\(=0+0+\dfrac{4}{9}=\dfrac{4}{9}\)

Bình luận (3)
NH
24 tháng 12 2022 lúc 21:03

    (0,25)10.410 + \(\sqrt{5^2-3^2}\)

=   (0,25 .4)10 + \(\sqrt{25-9}\)

= 110 + \(\sqrt{16}\)

= 1 + 4 

= 5

\(\dfrac{5}{20}\) + \(\dfrac{18}{11}\) - 25% - ( \(\dfrac{18}{11}\) - \(\dfrac{4}{9}\))

= 25% +  \(\dfrac{18}{11}\) - 25% - \(\dfrac{18}{11}\) + \(\dfrac{4}{9}\)

= ( 25% - 25%)  + ( \(\dfrac{18}{11}\) - \(\dfrac{18}{11}\)) + \(\dfrac{4}{9}\)

= 0  + 0 + \(\dfrac{4}{9}\)

\(\dfrac{4}{9}\)

Bình luận (0)
MV
Xem chi tiết
NT
21 tháng 7 2021 lúc 10:22

undefined

Bình luận (0)
H24
Xem chi tiết
NT
8 tháng 7 2021 lúc 23:09

1) Ta có: \(\left(-\dfrac{2}{3}\right)^2\cdot\dfrac{-9}{8}-25\%\cdot\dfrac{-16}{5}\)

\(=\dfrac{4}{9}\cdot\dfrac{-9}{8}-\dfrac{1}{4}\cdot\dfrac{-16}{5}\)

\(=\dfrac{-1}{2}+\dfrac{4}{5}\)

\(=\dfrac{-5}{10}+\dfrac{8}{10}=\dfrac{3}{10}\)

2) Ta có: \(-1\dfrac{2}{5}\cdot75\%+\dfrac{-7}{5}\cdot25\%\)

\(=\dfrac{-7}{5}\cdot\dfrac{3}{4}+\dfrac{-7}{5}\cdot\dfrac{1}{4}\)

\(=\dfrac{-7}{5}\left(\dfrac{3}{4}+\dfrac{1}{4}\right)=-\dfrac{7}{5}\)

3) Ta có: \(-2\dfrac{3}{7}\cdot\left(-125\%\right)+\dfrac{-17}{7}\cdot25\%\)

\(=\dfrac{-17}{7}\cdot\dfrac{-5}{4}+\dfrac{-17}{7}\cdot\dfrac{1}{4}\)

\(=\dfrac{-17}{7}\cdot\left(\dfrac{-5}{4}+\dfrac{1}{4}\right)\)

\(=\dfrac{17}{7}\)

4) Ta có: \(\left(-2\right)^3\cdot\left(\dfrac{3}{4}\cdot0.25\right):\left(2\dfrac{1}{4}-1\dfrac{1}{6}\right)\)

\(=\left(-8\right)\cdot\left(\dfrac{3}{4}\cdot\dfrac{1}{4}\right):\left(\dfrac{9}{4}-\dfrac{7}{6}\right)\)

\(=\left(-8\right)\cdot\dfrac{3}{16}:\dfrac{54-28}{24}\)

\(=\dfrac{-3}{2}\cdot\dfrac{24}{26}\)

\(=\dfrac{-72}{52}=\dfrac{-18}{13}\)

Bình luận (0)
KN
Xem chi tiết
VH
22 tháng 7 2023 lúc 8:47

\(a) \sqrt{4x^2− 9} = 2\sqrt{x + 3}\)

\(ĐK:x\ge\dfrac{3}{2}\)

\(pt\Leftrightarrow4x^2-9=4\left(x+3\right)\)

\(\Leftrightarrow4x^2-9=4x+12\)

\(\Leftrightarrow4x^2-4x-21=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1-\sqrt{22}}{2}\left(l\right)\\x=\dfrac{1+\sqrt{22}}{2}\left(tm\right)\end{matrix}\right.\)

\(b)\sqrt{4x-20}+3.\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)

\(ĐK:x\ge5\)

\(pt\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(\Leftrightarrow2\sqrt{x-5}=4\Leftrightarrow\sqrt{x-5}=2\)

\(\Leftrightarrow x-5=4\Leftrightarrow x=9\left(tm\right)\)

Bình luận (0)
VH
22 tháng 7 2023 lúc 9:06

\(c)\dfrac{2}{3}\sqrt{9x-9}-\dfrac{1}{4}\sqrt{16x-16}+27.\sqrt{\dfrac{x-1}{81}}=4\)

ĐK:x>=1

\(pt\Leftrightarrow2\sqrt{x-1}-\sqrt{x-1}+3\sqrt{x-1}=4\)

\(\Leftrightarrow4\sqrt{x-1}=4\Leftrightarrow\sqrt{x-1}=1\)

\(\Leftrightarrow x-1=1\Leftrightarrow x=2\left(tm\right)\)

\(d)5\sqrt{\dfrac{9x-27}{25}}-7\sqrt{\dfrac{4x-12}{9}}-7\sqrt{x^2-9}+18\sqrt{\dfrac{9x^2-81}{81}}=0\)

\(ĐK:x\ge3\)

\(pt\Leftrightarrow3\sqrt{x-3}-\dfrac{14}{3}\sqrt{x-3}-7\sqrt{x^2-9}+6\sqrt{x^2-9}=0\)

\(\Leftrightarrow-\dfrac{5}{3}\sqrt{x-3}-\sqrt{x^2-9}=0\Leftrightarrow\dfrac{5}{3}\sqrt{x-3}+\sqrt{x^2-9}=0\)

\(\Leftrightarrow(\dfrac{5}{3}+\sqrt{x+3})\sqrt{x-3}=0\)

\(\Leftrightarrow\sqrt{x-3}=0\)    (vì \(\dfrac{5}{3}+\sqrt{x+3}>0\))

\(\Leftrightarrow x-3=0\Leftrightarrow x=3\left(nhận\right)\)

 

Bình luận (0)
LA
Xem chi tiết
H24
28 tháng 6 2023 lúc 19:08

\(a,P=\left(\dfrac{\sqrt{x}+2}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+2}-\dfrac{4x}{4-x}\right):\dfrac{x+5\sqrt{x}+6}{x-4}\left(dk:x\ge0,x\ne4\right)\)

\(=\left(\dfrac{\sqrt{x}+2}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+2}+\dfrac{4x}{x-4}\right).\dfrac{x-4}{x+2\sqrt{x}+3\sqrt{x}+6}\)

\(=\dfrac{\left(\sqrt{x}+2\right)^2-\left(\sqrt{x}-2\right)^2+4x}{x-4}.\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}+2\right)+3\left(\sqrt{x}+2\right)}\)

\(=\dfrac{x+4\sqrt{x}+4-x+4\sqrt{x}-4+4x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{4x+8\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{4\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{4\sqrt{x}}{\sqrt{x}+3}\)

\(b,x=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{4}}\\ =\sqrt{\left(\sqrt{5}+2\right)^2}-\sqrt{\left(\sqrt{5}-2\right)^2}\\ =\left|\sqrt{5}+2\right|-\left|\sqrt{5}-2\right|\\ =\sqrt{5}+2-\sqrt{5}+2\\ =4\)

Khi \(x=4\Rightarrow P=\dfrac{4\sqrt{4}}{\sqrt{4}+3}=\dfrac{4.2}{2+3}=\dfrac{8}{5}\)

\(c,P=2\Leftrightarrow\dfrac{4\sqrt{x}}{\sqrt{x}+3}=2\Leftrightarrow\dfrac{4\sqrt{x}-2\left(\sqrt{x}+3\right)}{\sqrt{x}+3}=0\Leftrightarrow2\sqrt{x}-6=0\Leftrightarrow\sqrt{x}=3\Leftrightarrow x=9\)

Bình luận (0)
2S
Xem chi tiết
NT
30 tháng 8 2023 lúc 21:33

6:ĐKXĐ: x>=0; x<>1/25

BPT=>\(\dfrac{3\sqrt{x}}{5\sqrt{x}-1}+3< =0\)

=>\(\dfrac{3\sqrt{x}+15\sqrt{x}-5}{5\sqrt{x}-1}< =0\)

=>\(\dfrac{18\sqrt{x}-5}{5\sqrt{x}-1}< =0\)

=>\(\dfrac{1}{5}< \sqrt{x}< =\dfrac{5}{18}\)

=>\(\dfrac{1}{25}< x< =\dfrac{25}{324}\)

7:

ĐKXĐ: x>=0

BPT \(\Leftrightarrow\dfrac{\sqrt{x}+1}{2\sqrt{x}+3}>\dfrac{8}{3}:\dfrac{8}{3}=1\)

=>\(\dfrac{\sqrt{x}+1}{2\sqrt{x}+3}-1>=0\)

=>\(\dfrac{\sqrt{x}+1-2\sqrt{x}-3}{2\sqrt{x}+3}>=0\)

=>\(-\sqrt{x}-2>=0\)(vô lý)

8:

ĐKXĐ: x>=0; x<>9/4

BPT \(\Leftrightarrow\dfrac{\sqrt{x}-2}{2\sqrt{x}-3}+4< 0\)

=>\(\dfrac{\sqrt{x}-2+8\sqrt{x}-12}{2\sqrt{x}-3}< 0\)

=>\(\dfrac{9\sqrt{x}-14}{2\sqrt{x}-3}< 0\)

TH1: 9căn x-14>0 và 2căn x-3<0

=>căn x>14/9 và căn x<3/2

=>14/9<căn x<3/2

=>196/81<x<9/4

TH2: 9căn x-14<0 và 2căn x-3>0

=>căn x>3/2 hoặc căn x<14/9

mà 3/2<14/9

nên trường hợp này Loại

9: 

ĐKXĐ: x>=0

\(BPT\Leftrightarrow\dfrac{2\sqrt{x}+3}{5\sqrt{x}+7}< =-\dfrac{1}{3}\)

=>\(\dfrac{2\sqrt{x}+3}{5\sqrt{x}+7}+\dfrac{1}{3}< =0\)

=>\(\dfrac{6\sqrt{x}+9+5\sqrt{x}+7}{3\left(5\sqrt{x}+7\right)}< =0\)

=>\(\dfrac{11\sqrt{x}+16}{3\left(5\sqrt{x}+7\right)}< =0\)(vô lý)

10: 

ĐKXĐ: x>=0; x<>1/49

\(BPT\Leftrightarrow\dfrac{6\sqrt{x}-2}{7\sqrt{x}-1}+6>0\)

=>\(\dfrac{6\sqrt{x}-2+42\sqrt{x}-6}{7\sqrt{x}-1}>0\)

=>\(\dfrac{48\sqrt{x}-8}{7\sqrt{x}-1}>0\)

=>\(\dfrac{6\sqrt{x}-1}{7\sqrt{x}-1}>0\)

TH1: 6căn x-1>0 và 7căn x-1>0

=>căn x>1/6 và căn x>1/7

=>căn x>1/6

=>x>1/36

TH2: 6căn x-1<0 và 7căn x-1<0

=>căn x<1/6 và căn x<1/7

=>căn x<1/7

=>0<=x<1/49

Bình luận (1)
H24
Xem chi tiết
NM
26 tháng 11 2021 lúc 20:20

a.

\(x=9-\dfrac{1}{\sqrt{\dfrac{9-4\sqrt{5}}{4}}}+\dfrac{1}{\sqrt{\dfrac{9+4\sqrt{5}}{4}}}\\ x=9-\dfrac{1}{\dfrac{\sqrt{5}-2}{2}}+\dfrac{1}{\dfrac{\sqrt{5}+2}{2}}\\ x=9-\left(\dfrac{2}{\sqrt{5}-2}-\dfrac{2}{\sqrt{5}+2}\right)=9-8=1\\ \Rightarrow f\left(x\right)=f\left(1\right)=\left(1-1+1\right)^{2016}=1\)

Bình luận (0)
NM
26 tháng 11 2021 lúc 20:32

c.

\(=\sin x\cdot\cos x+\dfrac{\sin^2x}{1+\dfrac{\cos x}{\sin x}}+\dfrac{\cos^2x}{1+\dfrac{\sin x}{\cos x}}\\ =\sin x\cdot\cos x+\dfrac{\sin^2x}{\dfrac{\sin x+\cos x}{\sin x}}+\dfrac{\cos^2x}{\dfrac{\sin x+\cos x}{\cos x}}\\ =\sin x\cdot\cos x+\dfrac{\sin^3x}{\sin x+\cos x}+\dfrac{\cos^3x}{\sin x+\cos x}\\ =\sin x\cdot\cos x+\dfrac{\left(\sin x+\cos x\right)\left(\sin^2x-\sin x\cdot\cos x+\cos^2x\right)}{\sin x+\cos x}\\ =\sin x\cdot\cos x-\sin x\cdot\cos x+\sin^2x+\cos^2x\\ =1\)

Bình luận (0)
NM
26 tháng 11 2021 lúc 20:44

d.

\(\dfrac{2}{a+b\sqrt{5}}-\dfrac{3}{a-b\sqrt{5}}=-9-20\sqrt{5}\\ \Leftrightarrow\dfrac{-a-5b\sqrt{5}}{\left(a+b\sqrt{5}\right)\left(a-b\sqrt{5}\right)}=-9-20\sqrt{5}\\ \Leftrightarrow\dfrac{a+5b\sqrt{5}}{a^2-5b^2}=9+20\sqrt{5}\\ \Leftrightarrow\left(9+20\sqrt{5}\right)\left(a^2-5b^2\right)=a+5b\sqrt{5}\\ \Leftrightarrow9\left(a^2-5b^2\right)+\sqrt{5}\left(20a^2-100b^2\right)-5b\sqrt{5}=a\\ \Leftrightarrow\sqrt{5}\left(20a^2-100b^2-5b\right)=9a^2-45b^2+a\)

Vì \(\sqrt{5}\) vô tỉ nên để \(\sqrt{5}\left(20a^2-100b^2-5b\right)\) nguyên thì

\(\left\{{}\begin{matrix}20a^2-100b^2-5b=0\\9a^2-45b^2+a=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}180a^2-900b^2-45b=0\\180a^2-900b^2+20a=0\end{matrix}\right.\\ \Leftrightarrow20a+45b=0\\ \Leftrightarrow4a+9b=0\Leftrightarrow a=-\dfrac{9}{4}b\\ \Leftrightarrow9a^2-45b^2+a=\dfrac{729}{16}b^2-45b^2-\dfrac{9}{4}b=0\\ \Leftrightarrow\dfrac{9}{16}b^2-\dfrac{9}{4}b=0\\ \Leftrightarrow b\left(\dfrac{9}{16}b-\dfrac{9}{4}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}b=0\\b=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=0\\a=9\end{matrix}\right.\)

Với \(\left(a;b\right)=\left(0;0\right)\left(loại\right)\)

Vậy \(\left(a;b\right)=\left(9;4\right)\)

Bình luận (0)
TD
Xem chi tiết
NT
23 tháng 5 2022 lúc 14:35

a: \(=\dfrac{11}{21}+\dfrac{10}{21}+\dfrac{-2}{7}+\dfrac{-5}{7}-\dfrac{6}{5}=\dfrac{-6}{5}\)

b: \(=\left[0.25\cdot\left(-4\right)\right]^5\cdot\left(-\dfrac{50}{9}\right)\)

=50/9

c: \(=\dfrac{3}{22}\left(19+\dfrac{1}{7}+2+\dfrac{6}{7}\right)-6\)

\(=\dfrac{3}{22}\cdot22-6=3-6=-3\)

Bình luận (0)
AK
Xem chi tiết
H9
16 tháng 8 2023 lúc 8:39

1) 

a) \(\sqrt{2x-4}\) có nghĩa khi:

\(2x-4\ge0\)

\(\Leftrightarrow2x\ge4\)

\(\Leftrightarrow x\ge\dfrac{4}{2}\)

\(\Leftrightarrow x\ge2\)

b) \(\sqrt{\dfrac{-7}{4-x}}\) có nghĩa khi 

\(\dfrac{-7}{4-x}\ge0\) mà \(-7< 0\)

\(\Rightarrow4-x\le0\)

\(\Leftrightarrow x\ge4\)

Bình luận (2)
H9
16 tháng 8 2023 lúc 8:49

2) 

a) \(A=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)

\(A=\sqrt{\left(\sqrt{5}\right)^2+2\cdot2\sqrt{5}+2^2}-\sqrt{\left(\sqrt{5}\right)^2-2\cdot2\cdot\sqrt{5}+2^2}\)

\(A=\sqrt{\left(\sqrt{5}+2\right)^2}-\sqrt{\left(\sqrt{5}-2\right)^2}\)

\(A=\left|\sqrt{5}+2\right|-\left|\sqrt{5}-2\right|\)

\(A=\sqrt{5}+2-\sqrt{5}+2\)

\(A=4\)

\(B=\left(\dfrac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\dfrac{\sqrt{15}-5}{1-\sqrt{3}}\right):\dfrac{1}{\sqrt{5}-\sqrt{7}}\)

\(B=\left(-\dfrac{\sqrt{14}-\sqrt{7}}{\sqrt{2}-1}-\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}\)

\(B=\left[-\dfrac{\sqrt{7}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}-\dfrac{\sqrt{5}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}\right]\cdot\left(\sqrt{7}-\sqrt{5}\right)\)

\(B=\left(-\sqrt{7}-\sqrt{5}\right)\cdot\left(\sqrt{7}+\sqrt{5}\right)\)

\(B=-\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)\)

\(B=-\left(7-5\right)\)

\(B=-2\)

Bình luận (1)