Những câu hỏi liên quan
H24
Xem chi tiết
NL
3 tháng 12 2021 lúc 10:20

\(6x^2-5x+a=\left(6x^2-5x-6\right)+a+6=\left(3x+2\right)\left(2x-3\right)+a+6\)

Do \(\left(3x+2\right)\left(2x-3\right)⋮3x+2\) nên đa thức đã cho chia hết 3x+2 khi và chỉ khi:

\(a+6=0\Rightarrow a=-6\)

Bình luận (0)
LY
Xem chi tiết
H24
26 tháng 10 2023 lúc 20:24

loading...

Bình luận (0)
NQ
Xem chi tiết
NT
20 tháng 9 2021 lúc 21:09

\(A=-x^2+3x-7\)

\(=-\left(x^2-3x+7\right)\)

\(=-\left(x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{19}{4}\right)\)

\(=-\left(x-\dfrac{3}{2}\right)^2-\dfrac{19}{4}< 0\forall x\)

Bình luận (0)
LL
20 tháng 9 2021 lúc 21:09

\(3x-7-x^2=-\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{19}{4}=-\left(x-\dfrac{3}{2}\right)^2-\dfrac{19}{4}\le-\dfrac{19}{4}< 0\)

Bình luận (0)
TL
Xem chi tiết
AH
22 tháng 5 2021 lúc 1:52

a) 

$|3x-2|=2x\Rightarrow x\geq 0$.

Xét 2 TH:

TH1: $x\geq \frac{2}{3}$ thì pt trở thành:

$3x-2=2x\Leftrightarrow x=2$ (thỏa mãn)

TH2: $0\leq x< \frac{2}{3}$ thì pt trở thành:

$2-3x=2x\Leftrightarrow x=\frac{2}{5}$ (thỏa mãn)

b) 

PT $\Rightarrow x\geq 0$

$\Rightarrow |4+2x|=4+2x$. PT trở thành:

$4+2x=4x\Leftrightarrow x=2$ (thỏa mãn)

 

Bình luận (0)
AH
22 tháng 5 2021 lúc 1:54

c) 

Xét các TH sau:

TH1: $x\geq \frac{3}{2}$. Khi đó, pt trở thành:

$2x-3=-x+21$

$\Leftrightarrow x=8$ (thỏa mãn)

TH2: $x< \frac{3}{2}$. Khi đó, pt trở thành:

$3-2x=-x+21$

$\Leftrightarrow x=-18$ (thỏa mãn)

d) 

Từ PT suy ra $x-2\geq 0\Leftrightarrow x\geq 2(*)$

Khi đó: $|3x-1|=3x-1$. PT trở thành:
$3x-1=x-2$

$\Leftrightarrow 2x=-1<0\Rightarrow x<0$ (mâu thuẫn với $(*)$)

Vậy PT vô nghiệm.

Bình luận (0)
KN
Xem chi tiết
H24
11 tháng 7 2021 lúc 17:29

`a)|2x+1|=5`

`<=>` \(\left[ \begin{array}{l}2x+1=5\\2x+1=-5\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}2x=4\\2x=-6\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=2\\x=-3\end{array} \right.\) 

`b)|2x+1|=0`

`<=>2x+1=0`

`<=>2x=-1`

`<=>x=-1/2`

`c)|2x+1|=7`

`<=>` \(\left[ \begin{array}{l}2x+1=7\\2x+1=-7\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}2x=6\\2x=-8\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=4\\x=-4\end{array} \right.\) 

`d)|2x+5|=|3x-7|`

`<=>` \(\left[ \begin{array}{l}2x+5=3x-7\\2x+5=7-3x\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=12\\5x=2\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=12\\x=\dfrac25\end{array} \right.\) 

`e)|2x+7|=1`

`<=>` \(\left[ \begin{array}{l}2x+7=1\\2x+7=-1\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}2x=-6\\2x=-8\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=3\\x=-4\end{array} \right.\) 

`g)|x-2|+|2x-3|=2`

Nếu `x>=2=>|x-2|=x-2,|2x-3|=2x-3`

`pt<=>x-2+2x-3=2`

`<=>3x-5=2`

`<=>3x=7`

`<=>x=7/3(tm)`

Nếu `x<=3/2=>|x-2|=2-x,|2x-3|=3-2x`

`pt<=>2-x+3-2x=2`

`<=>5-3x=2`

`<=>3x=3`

`<=>x=1(tm)`

Nếu `3/2<=x<=2=>|x-2|=2-x,|2x-3|=2x-3`

`pt<=>2-x+2x-3=2`

`<=>x-1=2`

`<=>x=3(l)`

`h)|x+2|+|1-x|=3x+2`

Vì `VT>=0=>3x+2>=0=>x>=-2/3`

`=>|x+2|=x+2`

`pt<=>x+2+|1-x|=3x+2`

`<=>|1-x|=2x(x>=0)`

`<=>` \(\left[ \begin{array}{l}2x=1-x\\2x=x-1\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}3x=1\\x=-1\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=\dfrac13(TM)\\x=-1(KTM)\end{array} \right.\) 

Bình luận (5)
AH
11 tháng 7 2021 lúc 17:29

a.

$|2x+1|=5$
\(\Leftrightarrow \left[\begin{matrix} 2x+1=5\\ 2x+1=-5\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=2\\ x=-3\end{matrix}\right.\)

b.

$|2x+1|=0$

$\Leftrightarrow 2x+1=0$

$\Leftrightarrow x=-\frac{1}{2}$
c.

$|2x+1|=7$

\(\Leftrightarrow \left[\begin{matrix} 2x+1=7\\ 2x+1=-7\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=3\\ x=-4\end{matrix}\right.\)

 

Bình luận (1)
AH
11 tháng 7 2021 lúc 17:38

d.

$|2x+5|=|3x-7|$

\(\Leftrightarrow \left[\begin{matrix} 2x+5=3x-7\\ 2x+5=7-3x\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=12\\ x=0,4\end{matrix}\right.\)

e.

$|2x+7|=x-1\Rightarrow x-1\geq 0\Leftrightarrow x\geq 1$
Với $x\geq 1$ thì $|2x+7|=2x+7$

Khi đó pt trở thành:
$2x+7=x-1$

$\Leftrightarrow x=-8< 1$ (vô lý)

Vậy pt vô nghiệm.

g.

$|x-2|+|2x-3|=2$

Nếu $x\geq 2$ thì pt trở thành:

$x-2+2x-3=2$

$\Leftrightarrow 3x-5=2$

$\Leftrightarrow x=\frac{7}{3}$ (thỏa mãn)

Nếu $\frac{3}{2}\leq x< 2$ thì pt trở thành:

$2-x+2x-3=2$

$\Leftrightarrow x=3$ (không thỏa mãn)

Nếu $x< \frac{3}{2}$ thì pt trở thành:

$2-x+3-2x=2$

$\Leftrightarrow 5-3x=2$

$\Leftrightarrow x=1$ (thỏa mãn)

Vậy..........

h.

Từ đề suy ra $x\geq \frac{-2}{3}$

$\Rightarrow |x+2|=x+2$

Nếu  $x\geq 1$ thì $|1-x|=x-1$. PT trở thành:

$x+2+x-1=3x+2$

$\Leftrightarrow 2x+1=3x+2$

$\Leftrightarrow x=-1$ (vô lý)

Nếu $\frac{-2}{3}\leq x< 1$ thì $|1-x|=1-x$. PT trở thành:
$x+2+1-x=3x+2$

$\Leftrightarrow 3=3x+2$

$\Leftrightarrow x=\frac{1}{3}$ (thỏa mãn)

 

Bình luận (0)
HP
Xem chi tiết
NK
Xem chi tiết
TC
24 tháng 4 2022 lúc 21:10

nghiệm hay j

Bình luận (0)
SG
24 tháng 4 2022 lúc 21:14

Tính j vậy bạn

Bình luận (0)
GH
Xem chi tiết
TT
1 tháng 9 2021 lúc 15:50

\(|-2x+1,5|=\dfrac{1}{4}\Rightarrow-2x+1,5=\pm\dfrac{1}{4}\)

\(-2x+1,5=\dfrac{1}{4}\Rightarrow-2x=1,5-0,25\Rightarrow-2x=1,25\Rightarrow x=1,25:\left(-2\right)\Rightarrow x=...\)

\(-2x+1,5=-\dfrac{1}{4}\Rightarrow-2x=-0,25-1,5\Rightarrow-2x=1,75\Rightarrow x=1,75:\left(-2\right)\Rightarrow x=...\)

Bình luận (0)
TT
1 tháng 9 2021 lúc 16:08

\(\dfrac{3}{2}-|1.\dfrac{1}{4}+3x|=\dfrac{1}{4}\Rightarrow|1.\dfrac{1}{4}+3x|=\dfrac{3}{2}-\dfrac{1}{4}\Rightarrow|1.\dfrac{1}{4}+3x|=\dfrac{5}{4}\)

\(\Rightarrow1.\dfrac{1}{4}+3x=\pm\dfrac{5}{4}\)

\(1.\dfrac{1}{4}+3x=\dfrac{5}{4}\Rightarrow\dfrac{1}{4}+3x=\dfrac{5}{4}\Rightarrow3x=\dfrac{5}{4}-\dfrac{1}{4}\Rightarrow3x=1\Rightarrow x=3\)

\(1.\dfrac{1}{4}+3x=-\dfrac{5}{4}\Rightarrow\dfrac{1}{4}+3x=-\dfrac{5}{4}\Rightarrow3x=-\dfrac{5}{4}-\dfrac{1}{4}\Rightarrow3x=-\dfrac{3}{2}x=...\)

Bình luận (0)
NT
1 tháng 9 2021 lúc 23:05

a: ta có: \(\left|-2x+\dfrac{3}{2}\right|=\dfrac{1}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}-2x+\dfrac{3}{2}=\dfrac{1}{4}\\-2x+\dfrac{3}{2}=-\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-2x=-\dfrac{5}{4}\\-2x=-\dfrac{7}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{8}\\x=\dfrac{7}{8}\end{matrix}\right.\)

b: Ta có: \(\dfrac{3}{2}-\left|\dfrac{5}{4}+3x\right|=\dfrac{1}{4}\)

\(\Leftrightarrow\left|3x+\dfrac{5}{4}\right|=\dfrac{5}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+\dfrac{5}{4}=\dfrac{5}{4}\\3x+\dfrac{5}{4}=-\dfrac{5}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=0\\3x=-\dfrac{5}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{5}{6}\end{matrix}\right.\)

Bình luận (0)
GH
Xem chi tiết
H24
4 tháng 9 2021 lúc 9:31

a) \(\left|4x-1\right|-\left|3x-\dfrac{1}{2}\right|=0\\ \Leftrightarrow\left|4x-1\right|=\left|3x-\dfrac{1}{2}\right|\\ \Leftrightarrow\left[{}\begin{matrix}4x-1=3x-\dfrac{1}{2}\\4x-1=\dfrac{1}{2}-3x\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}4x-3x=1-\dfrac{1}{2}\\4x+3x=\dfrac{1}{2}+1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\7x=\dfrac{3}{2}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{3}{14}\end{matrix}\right.\)

Vậy \(x\in\left\{\dfrac{1}{2};\dfrac{3}{14}\right\}\) là nghiệm của pt.

b) \(\left|x-1\right|-2x=\dfrac{1}{2}\\ \Leftrightarrow\left|x-1\right|=2x+\dfrac{1}{2}\left(ĐK:x\ge\dfrac{-1}{4}\right)\\ \Leftrightarrow\left[{}\begin{matrix}x-1=2x+\dfrac{1}{2}\\x-1=-2x-\dfrac{1}{2}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x-2x=1+\dfrac{1}{2}\\x+2x=1-\dfrac{1}{2}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}-x=\dfrac{3}{2}\\3x=\dfrac{1}{2}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-3}{2}\left(ktmđk\right)\\x=\dfrac{1}{6}\left(tmđk\right)\end{matrix}\right.\)

Vậy \(x=\dfrac{1}{6}\) là nghiệm của pt.

Bình luận (2)
AH
4 tháng 9 2021 lúc 9:33

Lời giải:

a.

$|4x-1|-|3x-\frac{1}{2}|=0$

$\Leftrightarrow |4x-1|=|3x-\frac{1}{2}$

\(\Leftrightarrow \left[\begin{matrix} 4x-1=3x-\frac{1}{2}\\ 4x-1=\frac{1}{2}-3x\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{1}{2}\\ x=\frac{3}{14}\end{matrix}\right.\)

b. Nếu $x\geq 1$ thì:

$|x-1|-2x=\frac{1}{2}$

$\Leftrightarrow x-1-2x=\frac{1}{2}$
$\Leftrightarrow -x-1=\frac{1}{2}$

$\Leftrightarrow x=\frac{-3}{2}$ (vô lý vì $x\geq 1$)

Nếu $x< 1$ thì:

$1-x-2x=\frac{1}{2}$

$\Leftrightarrow x=\frac{1}{6}$ (tm)

 

Bình luận (2)