Bài 4: Giá trị tuyệt đối của một số hữu tỉ. Cộng, trừ, nhân, chia số thập phân

GH

Bài 9: Tìm x, biết:

a)|4x-1| - |3x-1/2|=0

b)|x-1|-2x=1/2

Giúp mình với mình đang cần gấpkhocroi

 

 

H24
4 tháng 9 2021 lúc 9:31

a) \(\left|4x-1\right|-\left|3x-\dfrac{1}{2}\right|=0\\ \Leftrightarrow\left|4x-1\right|=\left|3x-\dfrac{1}{2}\right|\\ \Leftrightarrow\left[{}\begin{matrix}4x-1=3x-\dfrac{1}{2}\\4x-1=\dfrac{1}{2}-3x\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}4x-3x=1-\dfrac{1}{2}\\4x+3x=\dfrac{1}{2}+1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\7x=\dfrac{3}{2}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{3}{14}\end{matrix}\right.\)

Vậy \(x\in\left\{\dfrac{1}{2};\dfrac{3}{14}\right\}\) là nghiệm của pt.

b) \(\left|x-1\right|-2x=\dfrac{1}{2}\\ \Leftrightarrow\left|x-1\right|=2x+\dfrac{1}{2}\left(ĐK:x\ge\dfrac{-1}{4}\right)\\ \Leftrightarrow\left[{}\begin{matrix}x-1=2x+\dfrac{1}{2}\\x-1=-2x-\dfrac{1}{2}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x-2x=1+\dfrac{1}{2}\\x+2x=1-\dfrac{1}{2}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}-x=\dfrac{3}{2}\\3x=\dfrac{1}{2}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-3}{2}\left(ktmđk\right)\\x=\dfrac{1}{6}\left(tmđk\right)\end{matrix}\right.\)

Vậy \(x=\dfrac{1}{6}\) là nghiệm của pt.

Bình luận (2)
AH
4 tháng 9 2021 lúc 9:33

Lời giải:

a.

$|4x-1|-|3x-\frac{1}{2}|=0$

$\Leftrightarrow |4x-1|=|3x-\frac{1}{2}$

\(\Leftrightarrow \left[\begin{matrix} 4x-1=3x-\frac{1}{2}\\ 4x-1=\frac{1}{2}-3x\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{1}{2}\\ x=\frac{3}{14}\end{matrix}\right.\)

b. Nếu $x\geq 1$ thì:

$|x-1|-2x=\frac{1}{2}$

$\Leftrightarrow x-1-2x=\frac{1}{2}$
$\Leftrightarrow -x-1=\frac{1}{2}$

$\Leftrightarrow x=\frac{-3}{2}$ (vô lý vì $x\geq 1$)

Nếu $x< 1$ thì:

$1-x-2x=\frac{1}{2}$

$\Leftrightarrow x=\frac{1}{6}$ (tm)

 

Bình luận (2)

Các câu hỏi tương tự
GH
Xem chi tiết
GH
Xem chi tiết
HK
Xem chi tiết
GH
Xem chi tiết
VT
Xem chi tiết
GH
Xem chi tiết
NN
Xem chi tiết
TK
Xem chi tiết
NA
Xem chi tiết