Những câu hỏi liên quan
HC
Xem chi tiết
LD
9 tháng 3 2019 lúc 12:27

\(\sqrt{3x^2+6x+12}+\sqrt{5x^2-10x^2+9}=\sqrt{3\left(x^2+2x+1\right)+9}+\sqrt{5\left(x^2-2x+1\right)+4}\)

\(\ge\sqrt{9}+\sqrt{4}=3+2=5\)

Bình luận (0)
NV
Xem chi tiết
NM
6 tháng 2 2016 lúc 21:24

2) năm mới chúc nhau niềm vui ( cho bài dễ thôi )

Vt >/ 3 + 2 = 5

 VP </ 5 

dấu = xảy ra  khi x =-1

Bình luận (0)
MT
6 tháng 2 2016 lúc 20:50

Dùng Hằng Đẳng Thức thôi bạn ạ

Bình luận (0)
NV
6 tháng 2 2016 lúc 20:52

Minh Triều bạn làm giúp mk đi, mk ko làm đc

Bình luận (0)
DH
Xem chi tiết
NH
11 tháng 9 2019 lúc 10:09

Ta có: Vế trái = \(\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^24}\ge\sqrt{9}+\sqrt{4}=5\)

Dấu "=" xảy ra\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\x^2=1\end{matrix}\right.\Leftrightarrow x=-1\)

Bình luận (0)
MG
Xem chi tiết
H1
29 tháng 8 2017 lúc 21:58

hẽhe kĩckDễ z sao đăg hả bn

Bình luận (0)
AN
30 tháng 8 2017 lúc 9:27

\(\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+9}\)

\(=\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2+4}\ge3+2=5\)

Bình luận (0)
LL
Xem chi tiết
HD
18 tháng 12 2017 lúc 21:06

\(\sqrt{3\left(x^2+2x+1\right)+9}\ge3\) (1)

\(\sqrt{5\left(x^4-2x^2+1\right)+4}\ge2\) (2)

\(\Rightarrow\left(1\right)+\left(2\right)\ge5\)

Bình luận (0)
HA
Xem chi tiết
TH
30 tháng 4 2017 lúc 15:57

\(\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+9}\\ =\sqrt{3\left(x^2+2x+1\right)+9}+\sqrt{5\left(\left(x^2\right)^2-2x^2+1\right)+4}\\ =\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2+4}\)

do: \(+\left(x+1\right)^2\ge0\Rightarrow3.\left(x+1\right)^2+9\ge9\Rightarrow\sqrt{3\left(x+1\right)^2+9}\ge\sqrt{9}=3\)(1)\(+\left(x^2-1\right)^2\ge0\Rightarrow5\left(x^2-1\right)^2+4\ge4\Rightarrow\sqrt{5\left(x^2-1\right)^2+4}\ge\sqrt{4}=2\)(2)

từ (1) và(2)\(\Rightarrow\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2+4}\ge3+2=5\)

câu b bạn làm tương tự

Bình luận (0)
LD
Xem chi tiết
MN
Xem chi tiết
NL
13 tháng 8 2021 lúc 21:08

Ta có:

\(\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+9}=\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2+4}\ge\sqrt{9}+\sqrt{4}=5\)

\(3-4x-2x^2=5-2\left(x+1\right)^2\le5\)

Đẳng thức xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}3\left(x+1\right)^2=0\\5\left(x^2-1\right)^2=0\\2\left(x+1\right)^2=0\end{matrix}\right.\) \(\Rightarrow x=-1\)

Vậy pt có nghiệm duy nhất \(x=-1\)

Bình luận (0)
TT
Xem chi tiết
NT
5 tháng 11 2021 lúc 21:06

a: \(A=x^3-27-x^3+3x^2-3x+1-4\left(x^2-4\right)-x\)

\(=3x^2-4x-26-4x^2+16\)

\(=-x^2-4x-10\)

Bình luận (0)