Những câu hỏi liên quan
MT
Xem chi tiết
NH
Xem chi tiết
NH
2 tháng 8 2017 lúc 9:40

lam giong nhu khuyen hoang nhung me bao lo

(a+2)2 = 0,2

(b-3)4= 2

(5-c)6=0

Bình luận (0)
TH
Xem chi tiết
VK
Xem chi tiết
TU
18 tháng 3 2017 lúc 20:40

ủa hình như còn thiếu "bằng 0" thì phải

a=(-2)

b=3

c=3

a+b+c=-2+3+5=6

Bình luận (0)
TD
18 tháng 3 2017 lúc 21:00

bằng 6 nhé

Bình luận (0)
ND
Xem chi tiết
AB
Xem chi tiết
BD
Xem chi tiết
DT
19 tháng 6 2017 lúc 13:35

a3+b3+c3=3abc

<=>(a+b)3-3ab(a+b)-3abc+c3=0

<=>(a+b+c)[(a+b)2-(a+b)c+c2]-3ab.(a+b+c)=0

<=>(a+b+c)(a2+b2+c2-ab-bc-ac)=0

<=>(a+b+c)(2a2+2b2+2c2-2ab-2bc-2ac)=0

<=>(a+b+c)[(a-b)2+(b-c)2+(c-a)2]=0

<=>a+b+c=0 [(a-b)2+(b-c)2+(c-a)2 khác 0]

=>a2+b2-c2=-2ab;b2+c2-a2=-2bc;c2+a2-b2=-2ac

Suy ra : P=\(-\left(\dfrac{1}{2ab}+\dfrac{1}{2bc}+\dfrac{1}{2ac}\right)=-\dfrac{a+b+c}{2abc}=0\)

Bình luận (0)
TL
Xem chi tiết
NQ
30 tháng 4 2021 lúc 16:10

câu trả lời là c nha

Bình luận (0)
 Khách vãng lai đã xóa
TL
30 tháng 4 2021 lúc 21:26

vậy bạn cho mình biết cách làm đi 

Bình luận (0)
 Khách vãng lai đã xóa
LD
1 tháng 5 2021 lúc 22:35

Dễ thấy VT ≥ 0 ∀ x,y mà đề bài cho VT ≤ 0 

=> VT = 0 <=> \(\hept{\begin{cases}3x+9=0\\2-y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=2\end{cases}}\)

=> xy = -6 => C)

Bình luận (0)
 Khách vãng lai đã xóa
NP
Xem chi tiết
NL
3 tháng 3 2022 lúc 17:56

Đặt vế trái là P

\(P=\dfrac{1.c+ab}{a+b}+\dfrac{1.a+bc}{b+c}+\dfrac{1.b+ac}{a+c}=\dfrac{c\left(a+b+c\right)+ab}{a+b}+\dfrac{a\left(a+b+c\right)+bc}{b+c}+\dfrac{b\left(a+b+c\right)+ac}{a+c}\)

\(P=\dfrac{ac+c^2+bc+ab}{a+b}+\dfrac{a^2+ac+ab+bc}{b+c}+\dfrac{ab+ac+b^2+bc}{a+c}\)

\(P=\dfrac{c\left(a+c\right)+b\left(a+c\right)}{a+b}+\dfrac{a\left(a+c\right)+b\left(a+c\right)}{b+c}+\dfrac{a\left(b+c\right)+b\left(b+c\right)}{a+c}\)

\(P=\dfrac{\left(a+c\right)\left(b+c\right)}{a+b}+\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}+\dfrac{\left(a+b\right)\left(b+c\right)}{a+c}\)

Áp dụng BĐT Cô-si:

\(\dfrac{\left(a+c\right)\left(b+c\right)}{a+b}+\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}\ge2\sqrt{\dfrac{\left(a+c\right)\left(b+c\right)\left(a+b\right)\left(a+c\right)}{\left(a+b\right)\left(b+c\right)}}=2\left(a+c\right)\) (1)

 Tương tự: \(\dfrac{\left(a+c\right)\left(b+c\right)}{a+b}+\dfrac{\left(a+b\right)\left(b+c\right)}{a+c}\ge2\left(b+c\right)\) (2)

\(\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}+\dfrac{\left(a+b\right)\left(b+c\right)}{a+c}\ge2\left(a+b\right)\) (3)

Cộng vế với vế (1);(2);(3):

\(2.\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}+2.\dfrac{\left(a+b\right)\left(b+c\right)}{a+c}+2.\dfrac{\left(a+c\right)\left(b+c\right)}{a+b}\ge2\left(a+b\right)+2\left(b+c\right)+2\left(c+a\right)\)

\(\Leftrightarrow\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}+\dfrac{\left(a+b\right)\left(b+c\right)}{a+c}+\dfrac{\left(a+c\right)\left(b+c\right)}{a+c}\ge2\left(a+b+c\right)=2\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)

Bình luận (0)