Tìm các số tự nhiên x, y thỏa mãn: 16x2 - 2xy2 - 3y2 + 24x=-336
tìm các số tự nhiên x,y thỏa mãn: \(36x^2-2xy^2-3y^2+24x=-336\)
tìm cặp số nguyên (x;y) thỏa mãn:2xy2+2x+3y2=4
`2xy^2 + 2x + 3y^2 = 4`
`<=> 2x(y^2 + 1) + 3(y^1 + 1) = 7`
`<=> (2x + 3)(y^2 + 1) = 7`
`=> (2x+3),(y^2 + 1) \in Ư(7) = {-7;-1;1;7}`
Mà `y^2 + 1 \ge 1` nên không thể nhận giá trị âm, xét `2` trường hợp:
`-` Trường hợp `1:`
`2x + 3 = 7 <=> 2x = 4 <=> x = 2(TM)`
`y^2 + 1 = 1 <=> y^2 = 0 <=> y = 0 (TM)`
`-` Trường hợp `2:`
`2x + 3 = 1 <=> 2x = -2 <=> x = -1 (TM)`
`y^2 + 1 = 7 <=> y^2 = 6 <=> y = +- \sqrt{6}(Loại)`
Vậy `(x;y)=(2;0)`
Tìm các cặp số nguyên x,y thỏa man: 2xy2+2x+3y2=4
\(2xy^2+2x+3y^2=4\left(x;y\inℤ\right)\)
\(\Leftrightarrow2x\left(y^2+1\right)+3y^2+3-3=4\)
\(\Leftrightarrow2x\left(y^2+1\right)+3\left(y^2+1\right)=7\)
\(\Leftrightarrow\left(2x+3\right)\left(y^2+1\right)=7\)
\(\Leftrightarrow\left(2x+3\right);\left(y^2+1\right)\in U\left(7\right)=\left\{-1;1-7;7\right\}\)
\(TH1:\left\{{}\begin{matrix}2x+3=-1\\y^2+1=-7\left(loại\right)\end{matrix}\right.\)
\(TH2:\left\{{}\begin{matrix}2x+3=1\\y^2+1=7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=-2\\y^2=6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=\pm\sqrt[]{6}\left(loại\right)\end{matrix}\right.\)
\(TH3:\left\{{}\begin{matrix}2x+3=-7\\y^2+1=-1\left(loại\right)\end{matrix}\right.\)
\(TH1:\left\{{}\begin{matrix}2x+3=7\\y^2+1=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=4\\y^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\) thỏa điều kiện đề bài
2xy² + 2x + 3y² = 4
2xy² + 2x + 3y² + 3 = 4 + 3
(2xy² + 2x) + (3y² + 3) = 7
2x(y² + 1) + 3(y² + 1) = 7
(y² + 1)(2x + 3) = 7
TH1: 2x + 3 = 1 và y² + 1 = 7
*) 2x + 3 = 1
2x = -2
x = -1 (nhận)
*) y² + 1 = 7
y² = 6
y = ±√6 (loại)
TH2: 2x + 3 = -1 và y² + 1 = -7
*) 2x + 3 = -1
2x = -4
x = -2 (nhận)
*) y² + 1 = -7
y² = -8 (vô lý)
TH3: 2x + 3 = 7 và y² + 1 = 1
*) 2x + 3 = 7
2x = 4
x = 2 (nhận)
*) y² + 1 = 1
y² = 0
y = 0 (nhận)
TH4: 2x + 3 = -7 và y² + 1 = -1
*) 2x + 3 = -7
2x = -10
x = -5 (nhận)
*) y² + 1 = -1
y² = -2 (vô lý)
Vậy ta được cặp giá trị (x; y) thỏa mãn: (2; 0)
các bn giúp mình giải 1 số bài tập này nhé :
-tìm số tự nhiên n thỏa mãn :n+3 chia hết cho n-2
-tìm số tự nhiên n thỏa mãn :n+3 chia hết cho 2n -2
-tìm các số nguyên x thỏa mãn x lớn hơn hoặc bằng -21/7 và x bé hơn hoặc bằng 3
-tìm các số tự nhiên x,y thỏa mãn x-1 chia hết cho y , y-1 chia hết cho x
Cho các số x,y,z dương thỏa mãn:
x2 +y2 +z2 = 1. Tìm GTNN của M= 1/16x2 +1/4y2 + 1/z2
\(M=\dfrac{\dfrac{1}{16}}{x^2}+\dfrac{\dfrac{1}{4}}{y^2}+\dfrac{1}{z^2}\ge\dfrac{\left(\dfrac{1}{4}+\dfrac{1}{2}+1\right)^2}{x^2+y^2+z^2}=\dfrac{49}{16}\)
\(M_{min}=\dfrac{49}{16}\) khi \(\left(x;y;z\right)=\left(\dfrac{1}{\sqrt{7}};\dfrac{2}{\sqrt{14}};\dfrac{2}{\sqrt{7}}\right)\)
Cho các số x,y,z dương thỏa mãn:
x2 +y2 +z2 = 7/4. Tìm GTNN của M= 1/16x2 +1/4y2 + 1/z2
\(M=\dfrac{\dfrac{1}{16}}{x^2}+\dfrac{\dfrac{1}{4}}{y^2}+\dfrac{1}{z^2}\ge\dfrac{\left(\dfrac{1}{4}+\dfrac{1}{2}+1\right)^2}{x^2+y^2+z^2}=\dfrac{7}{4}\)
\(M_{min}=\dfrac{7}{4}\) khi \(\left(x;y;z\right)=\left(\dfrac{1}{2};\dfrac{1}{\sqrt{2}};1\right)\)
a, có hay không ác số tự nhiên x, y thỏa mãn : (x+y)(x-y)=2014
b, có hay không các số tự nhiên x thỏa mãn x(x+1)(x+2)=2012
c, có hay không các số tự nhiên x, y thỏa mãn : (x+y)(x-y)=2011
d , có không các số tự nhiên x, y thỏa mãn : (x+y)(x-y)=2013
a, có hay không ác số tự nhiên x, y thỏa mãn : (x+y)(x-y)=2014
b, có hay không các số tự nhiên x thỏa mãn x(x+1)(x+2)=2012
c, có hay không các số tự nhiên x, y thỏa mãn : (x+y)(x-y)=2011
d , có không các số tự nhiên x, y thỏa mãn : (x+y)(x-y)=2013
:D :D :D :D
1,Tìm các số nguyên x,y thỏa mãn .
\(x^2y^2-x^2-3y^2-2x-1=0\)
\(\Leftrightarrow y^2\left(x^2-3\right)-\left(x+1\right)^2=0\)
\(\Leftrightarrow y^2\left(x^2-3\right)=\left(x+1\right)^2\left(1\right)\)
Vì y2 và (x+1)2 đều là các số chính phương, do đó x2-3 cũng phải là số chính phương.
Đặt \(x^2-3=a^2\) (a là số tự nhiên).
\(\Leftrightarrow\left(x-a\right)\left(x+a\right)=3\)
Ta có x+a>x-a. Lập bảng:
x+a | 3 | -1 |
x-a | 1 | -3 |
x | 2 | -2 |
Với \(x=2\) . \(\left(1\right)\Rightarrow y^2=9\Leftrightarrow y=\pm3\)
Với \(x=-2\). \(\left(1\right)\Rightarrow y^2=1\Leftrightarrow y=\pm1\)
Vậy các số nguyên \(\left(x;y\right)=\left(2;3\right),\left(2;-3\right),\left(-2;1\right),\left(-2;-1\right)\)