2P

1,Tìm các số nguyên x,y thỏa mãn �2�2−�2−3�2−2�−1=0.

NA
2 tháng 3 2023 lúc 14:59

\(x^2y^2-x^2-3y^2-2x-1=0\)

\(\Leftrightarrow y^2\left(x^2-3\right)-\left(x+1\right)^2=0\)

\(\Leftrightarrow y^2\left(x^2-3\right)=\left(x+1\right)^2\left(1\right)\)

Vì y2 và (x+1)2 đều là các số chính phương, do đó x2-3 cũng phải là số chính phương.

Đặt \(x^2-3=a^2\) (a là số tự nhiên).

\(\Leftrightarrow\left(x-a\right)\left(x+a\right)=3\)

Ta có x+a>x-a. Lập bảng:

x+a3-1
x-a1-3
x2-2

Với \(x=2\) . \(\left(1\right)\Rightarrow y^2=9\Leftrightarrow y=\pm3\)

Với \(x=-2\)\(\left(1\right)\Rightarrow y^2=1\Leftrightarrow y=\pm1\)

Vậy các số nguyên \(\left(x;y\right)=\left(2;3\right),\left(2;-3\right),\left(-2;1\right),\left(-2;-1\right)\)

 

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
TN
Xem chi tiết
LH
Xem chi tiết
PM
Xem chi tiết
DH
Xem chi tiết
NL
Xem chi tiết
TN
Xem chi tiết
ST
Xem chi tiết
H24
Xem chi tiết