Những câu hỏi liên quan
PH
Xem chi tiết
H24
23 tháng 9 2017 lúc 21:45

Áp dụng bất đẳng thức \(\frac{1}{xy}\ge\frac{4}{\left(x+y\right)^2}\)với \(x>0,y>0\)thì

\(\frac{a}{b+c}+\frac{c}{d+a}=\frac{a^2+ad+bc+c^2}{\left(b+c\right)\left(a+d\right)}\ge\frac{4\left(a^2+ad+bc+c^2\right)}{\left(a+b+c+d\right)^2}\)\(\left(1\right)\)

Tương tự :\(\frac{b}{c+d}+\frac{d}{a+b}\ge\frac{4\left(b^2+ab+cd+d^2\right)}{\left(a+b+c+d\right)^2}\)\(\left(2\right)\)

Cộng\(\left(1\right)\)với \(\left(2\right)\)được

\(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\ge\frac{a\left(a^2+b^2+c^2+d^2+ad+bc+ad+cd\right)}{\left(a+b+c+d\right)^2}=4B\)

Cần chứng minh \(B\ge\frac{1}{2}\), bất đẳng thức này tương dương với

\(2B\ge1\Leftrightarrow2\left(a^2+b^2+c^2+d^2+ad+bc+ab+cd\right)\ge\left(a+b+c+d\right)^2\)

\(\Leftrightarrow a^2+b^2+c^2+d^2-2ac-2bd\ge0\)

\(\Leftrightarrow\left(a-c\right)^2+\left(b-b\right)^2\ge0\)(đúng)

Dấu "="xảy ra \(\Leftrightarrow\orbr{\begin{cases}a=c\\b=d\end{cases}}\)

Bình luận (0)
VM
23 tháng 9 2017 lúc 21:59

ta đặt \(A=\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}=\frac{a^2}{ab+ac}+\frac{b^2}{bc+bd}+\frac{c^2}{cd+ca}+\frac{d^2}{ad+db}\)

Áp dụng bất đẳng thức svác sơ ta có 

\(A\ge\frac{\left(a+b+c+d\right)^2}{ab+bc+cd+da+2ac+2bd}\)

mặt khác ta có 

\(\left[\left(a+c\right)+\left(b+d\right)\right]^2=\left(a+c\right)^2+\left(b+d\right)^2+2\left(a+c\right)\left(b+d\right)\)

\(=a^2+c^2+b^2+d^2+2ac+2bd+2\left(ab+ad+bc+cd\right)=a^2+c^2+b^2+d^2+ab+ad+cb+cd+\left(2ac+2bd+ab+ad+cb+cd\right)\)

đến đây cậu dùng cô si ta có 

\(a^2+c^2\ge2ac;b^2+d^2\ge2bd\)

cộng vào ta sẽ ra điêu phải chứng minh

cách hơi cùi một chút nhưng chắc là vẫn được

Bình luận (0)
TF
Xem chi tiết
H24
Xem chi tiết
PN
20 tháng 7 2020 lúc 19:55

đây là dạng mở rộng của nesbit 

Áp dụng bất đẳng thức Bunhiacopski :

\(\left[a\left(b+c\right)+b\left(c+d\right)+c\left(d+a\right)+d\left(a+b\right)\right].F\ge\left(a+b+c+d\right)^2\)

Tương đương  \(F\ge\frac{\left(a+b+c+d\right)^2}{a\left(b+c\right)+b\left(c+d\right)+c\left(d+a\right)+d\left(a+b\right)}\)

Ta có : \(\left(a+b+c+d\right)^2\ge4\left(a+d\right)\left(b+c\right)\)

\(\left(a+b+c+d\right)^2\ge4\left(a+b\right)\left(c+d\right)\)

Cộng theo vế các bất đẳng thức cùng chiều ta được :

\(2\left(a+b+c+d\right)^2\ge4\left[a\left(b+c\right)+b\left(c+d\right)+c\left(d+a\right)+d\left(a+b\right)\right]\)

Suy ra \(\frac{\left(a+b+c+d\right)^2}{a\left(b+c\right)+b\left(c+d\right)+c\left(d+a\right)+d\left(a+b\right)}\ge\frac{4}{2}=2\)

Vậy ta có điều phải chứng minh 

Bình luận (0)
 Khách vãng lai đã xóa
DH
20 tháng 7 2020 lúc 20:04

bạn @dcv thêm phần dấu "=" xảy ra \(\Leftrightarrow a=c;b=d\)

Bình luận (0)
 Khách vãng lai đã xóa
PP
Xem chi tiết
BT
Xem chi tiết
MM
Xem chi tiết
MT
Xem chi tiết
KS
Xem chi tiết
KS
12 tháng 9 2017 lúc 20:15

MK viết nhầm tất cả bỏ căn nhá

Bình luận (0)
H24
2 tháng 6 2018 lúc 20:39

sai đề bài rồi trắc bạn viết nhầm

Bình luận (0)
HT
2 tháng 6 2018 lúc 20:53

Đúng vậy, bỏ căn hết đi

Bình luận (0)
PP
Xem chi tiết