Cho 4 số dương a,b,c,d.CMR:
\(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{a+d}+\frac{d}{a+b}\ge2\)
cho các số thực dương a,b,c,d cm
\(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\ge2\)
Áp dụng bất đẳng thức \(\frac{1}{xy}\ge\frac{4}{\left(x+y\right)^2}\)với \(x>0,y>0\)thì
\(\frac{a}{b+c}+\frac{c}{d+a}=\frac{a^2+ad+bc+c^2}{\left(b+c\right)\left(a+d\right)}\ge\frac{4\left(a^2+ad+bc+c^2\right)}{\left(a+b+c+d\right)^2}\)\(\left(1\right)\)
Tương tự :\(\frac{b}{c+d}+\frac{d}{a+b}\ge\frac{4\left(b^2+ab+cd+d^2\right)}{\left(a+b+c+d\right)^2}\)\(\left(2\right)\)
Cộng\(\left(1\right)\)với \(\left(2\right)\)được
\(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\ge\frac{a\left(a^2+b^2+c^2+d^2+ad+bc+ad+cd\right)}{\left(a+b+c+d\right)^2}=4B\)
Cần chứng minh \(B\ge\frac{1}{2}\), bất đẳng thức này tương dương với
\(2B\ge1\Leftrightarrow2\left(a^2+b^2+c^2+d^2+ad+bc+ab+cd\right)\ge\left(a+b+c+d\right)^2\)
\(\Leftrightarrow a^2+b^2+c^2+d^2-2ac-2bd\ge0\)
\(\Leftrightarrow\left(a-c\right)^2+\left(b-b\right)^2\ge0\)(đúng)
Dấu "="xảy ra \(\Leftrightarrow\orbr{\begin{cases}a=c\\b=d\end{cases}}\)
ta đặt \(A=\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}=\frac{a^2}{ab+ac}+\frac{b^2}{bc+bd}+\frac{c^2}{cd+ca}+\frac{d^2}{ad+db}\)
Áp dụng bất đẳng thức svác sơ ta có
\(A\ge\frac{\left(a+b+c+d\right)^2}{ab+bc+cd+da+2ac+2bd}\)
mặt khác ta có
\(\left[\left(a+c\right)+\left(b+d\right)\right]^2=\left(a+c\right)^2+\left(b+d\right)^2+2\left(a+c\right)\left(b+d\right)\)
\(=a^2+c^2+b^2+d^2+2ac+2bd+2\left(ab+ad+bc+cd\right)=a^2+c^2+b^2+d^2+ab+ad+cb+cd+\left(2ac+2bd+ab+ad+cb+cd\right)\)
đến đây cậu dùng cô si ta có
\(a^2+c^2\ge2ac;b^2+d^2\ge2bd\)
cộng vào ta sẽ ra điêu phải chứng minh
cách hơi cùi một chút nhưng chắc là vẫn được
Cho a, b, c, d là các số thực dương. CMR :
a) \(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\ge2\)
b) \(\frac{a-b}{b+c}+\frac{b-c}{c+d}+\frac{c-d}{d+a}+\frac{d-a}{a+b}\ge0\)
Với a,b,c,d dương, chứng minh rằng \(F=\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\ge2\)
đây là dạng mở rộng của nesbit
Áp dụng bất đẳng thức Bunhiacopski :
\(\left[a\left(b+c\right)+b\left(c+d\right)+c\left(d+a\right)+d\left(a+b\right)\right].F\ge\left(a+b+c+d\right)^2\)
Tương đương \(F\ge\frac{\left(a+b+c+d\right)^2}{a\left(b+c\right)+b\left(c+d\right)+c\left(d+a\right)+d\left(a+b\right)}\)
Ta có : \(\left(a+b+c+d\right)^2\ge4\left(a+d\right)\left(b+c\right)\)
\(\left(a+b+c+d\right)^2\ge4\left(a+b\right)\left(c+d\right)\)
Cộng theo vế các bất đẳng thức cùng chiều ta được :
\(2\left(a+b+c+d\right)^2\ge4\left[a\left(b+c\right)+b\left(c+d\right)+c\left(d+a\right)+d\left(a+b\right)\right]\)
Suy ra \(\frac{\left(a+b+c+d\right)^2}{a\left(b+c\right)+b\left(c+d\right)+c\left(d+a\right)+d\left(a+b\right)}\ge\frac{4}{2}=2\)
Vậy ta có điều phải chứng minh
bạn @dcv thêm phần dấu "=" xảy ra \(\Leftrightarrow a=c;b=d\)
Cho a,b,c,d là các số dương
Chứng minh
\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+d^2}+\frac{d}{1+a^2}\ge2\)
cho a, b, c, d là các sô dương thoả mãn \(a^2+b^2=1\) và \(\frac{a^4}{c}+\frac{b^4}{d}=\frac{1}{c+d}\)chứng minh rằng \(\frac{a^2}{c}+\frac{d}{b^2}\ge2\)
cho các số dương a,b,c,cd thỏa mãn điều kiện: a + b + c = 3. C/m
\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+d^2}+\frac{d}{1+a^2}\ge2\)
Cho a,b,c,d là các số dương thỏa mãn \(a^2+b^2=1\)và \(\frac{a^4}{c}+\frac{b^4}{d}=\frac{1}{c+d}\)
CMR: \(\frac{a^2}{c}+\frac{d}{b^2}\ge2\)
Các bác giải hộ cái, e đang cần gấp
ho các số dương a,b,c .Chứng minh rằng bất đẳng thức
\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+d}}+\sqrt{\frac{c}{d+a}}+\sqrt{\frac{d}{a+b}}\)\(\ge2\)
Với a,c,c,d dương, chứng minh
\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+d^2}+\frac{d}{1+a^2}\ge2?\)