Những câu hỏi liên quan
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
FF
Xem chi tiết
NT
21 tháng 2 2022 lúc 22:10

a: Khi \(\widehat{ABC}=70^0\) thì \(\widehat{ACB}=70^0;\widehat{BAC}=40^0\)

Khi \(\widehat{BAC}=100^0\) thì \(\widehat{ABC}=\widehat{ACB}=40^0\)

Khi \(\widehat{BAC}=90^0\) thì \(\widehat{ABC}=\widehat{ACB}=45^0\)

b: Xét ΔABE và ΔACD có

AB=AC

\(\widehat{A}\) chung

AE=AD

Do đó: ΔABE=ΔACD

Suy ra: BE=CD

Bình luận (0)
LT
Xem chi tiết
TH
Xem chi tiết
TL
Xem chi tiết
NT
31 tháng 10 2021 lúc 0:01

a: Xét ΔABC có

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình của ΔABC

Suy ra: \(NM=\dfrac{BC}{2}=3.5\left(cm\right)\)

Bình luận (0)
HN
Xem chi tiết
NT
29 tháng 1 2021 lúc 23:09

a)Sửa đề: BM=CN

Xét (O) có 

OB là bán kính(gt)

O là trung điểm của BC(gt)

Do đó: BC là đường kính của (O)

Xét (O) có

ΔBMC nội tiếp đường tròn(B,M,C∈(O))

BC là đường kính của (O)(cmt)

Do đó: ΔBMC vuông tại M(Định lí)

Xét (O) có 

ΔBNC nội tiếp đường tròn(B,N,C∈(O))

BC là đường kính của (O)(cmt)

Do đó: ΔBNC vuông tại N(Định lí)

Xét ΔBMC vuông tại M và ΔCNB vuông tại N có 

BC là cạnh chung

\(\widehat{MBC}=\widehat{NCB}\)(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔBMC=ΔCNB(cạnh huyền-góc nhọn)

⇒BM=CN(hai cạnh tương ứng)

b) Xét ΔOBM và ΔOCN có 

OB=OC(=R)

OM=ON(=R)

BM=CN(cmt)

Do đó: ΔOBM=ΔOCN(c-c-c)

Bình luận (1)
AH
30 tháng 1 2021 lúc 16:44

Lời giải:

a) Đề đúng phải là CMR $BM=CN$.

Xét tam giác $BMC$ và $CNB$ có:

$\widehat{BMC}=\widehat{CNB}=90^0$ (góc nt chắn nửa đường tròn)

$\widehat{B}=\widehat{C}$ (do $ABC$ là tam giác cân tại $A$)

$\Rightarrow \triangle BMC\sim \triangle CNB$ (g.g)

$\Rightarrow BM=CN$ (đpcm)

b) 

Xét tam giác $OBM$ và $OCN$ có:

$OB=OC=R$

$OM=ON=R$

$BM=CN$ (theo phần a)

$\Rightarrow \triangle OBM=\triangle OCN$ (c.c.c)

c) 

$\widehat{NBA}=\widehat{NBM}=\frac{1}{2}\text{số đo cung MN}$

$\widehat{MON}=\text{số đo cung MN}$

$\Rightarrow \widehat{NBA}=\frac{1}{2}\widehat{MON}$

d) 

$\widehat{BMC}=\widehat{CNB}=90^0$ (góc nt chắn nửa đường tròn)

$\Rightarrow BN\perp AC, CM\perp AB$

$ABC$ là tam giác cân tại $A$, $O$ là trung điểm $BC$ nên đường trung tuyến $AO$ đồng thời là đường cao. Suy ra $AO\perp BC$

Như vậy $AO, BN, CM$ là 3 đường cao của tam giác $ABC$ nên $AO, BN, CM$ đồng quy (đpcm)

 

Bình luận (0)
AH
30 tháng 1 2021 lúc 16:47

Hình vẽ:

undefined

Bình luận (0)