Những câu hỏi liên quan
VL
Xem chi tiết
YN
26 tháng 4 2022 lúc 20:30

Câu 1.

\(M=\left(-\dfrac{2a^3b^2}{3}xy^2z\right)^3.\left(-\dfrac{3}{4}ab^{-3}x^2yz^2\right)^2.\left(-xy^2z^2\right)^2\)

\(=\left(-\dfrac{8}{27}a^9b^6x^3y^6z^3\right).\left(\dfrac{9}{16}a^2b^{-6}x^4y^2z^4\right).\left(x^2y^4z^4\right)\)

\(=-\dfrac{8}{27}.\dfrac{9}{16}.a^{11}x^9y^{12}z^{11}\)

\(=-\dfrac{1}{6}a^{11}x^9y^{12}z^{11}\)

Hệ số: \(-\dfrac{1}{6}\)

Bậc: \(43\)

Câu 2.

a) \(A\left(x\right)=\dfrac{1}{2}x^5+\dfrac{3}{4}x-12x^4-1\dfrac{2}{3}x^3+5+x^2+\dfrac{5}{3}x^3-\dfrac{11}{4}x+1\dfrac{1}{2}x^5+4x\)

 

\(=\left(\dfrac{1}{2}x^5+\dfrac{3}{2}x^5\right)+\left(-12x^4\right)+\left(-\dfrac{5}{3}x^3+\dfrac{5}{3}x^3\right)+x^2+\left(\dfrac{3}{4}x-\dfrac{11}{4}x+4x\right)+5\)

\(=2x^5-12x^4+x^2+2x+5\)

\(B\left(x\right)=-2x^5+\dfrac{3}{7}x+12x^4-\dfrac{7}{3}x^3-3-6x^2+\dfrac{13}{3}x^3+3\dfrac{4}{7}x\)

\(=\left(-2x^5\right)+12x^4+\left(-\dfrac{7}{3}x^3+\dfrac{13}{3}x^3\right)-6x^2+\left(\dfrac{3}{7}x+\dfrac{25}{7}x\right)-3\)

\(=-2x^5+12x^4+2x^3-6x^2+4x-3\)

b) \(C\left(x\right)=A\left(x\right)+B\left(x\right)=\left(2x^5-12x^4+x^2+2x+5\right)+\left(-2x^5+12x^4+2x^3-6x^2+4x-3\right)\)

\(=\left(2x^5-2x^5\right)+\left(-12x^4+12x^4\right)+2x^3+\left(x^2-6x^2\right)+\left(2x+4x\right)+\left(5-3\right)\)

\(=2x^3-5x^2+6x+2\)

\(D\left(x\right)=A\left(x\right)-B\left(x\right)=\left(2x^5-12x^4+x^2+2x+5\right)-\left(-2x^5+12x^4+2x^3-6x^2+4x-3\right)\)

 

\(=\left(2x^5+2x^5\right)+\left(-12x^4-12x^4\right)-2x^3+\left(x^2+6x^2\right)+\left(2x-4x\right)+\left(5+3\right)\)

\(=4x^5-24x^4-2x^3+7x^2-2x+8\)

c) \(2x^3-5x^2+6x+2-2x^3+5x^2=-4\)

\(\Rightarrow\left(2x^3-2x^3\right)+\left(-5x^2+5x^2\right)+6x+2\)

\(\Rightarrow6x+2=-4\)

\(\Rightarrow6x=-6\)

\(\Rightarrow x=-1\)

Câu 3.

1) \(M-3xy^2+2xy-x^3+2x^2y=2xy-3x^3+3x^2y-xy^2\)

\(\Rightarrow M=\left(3xy^2+2xy-x^3+2x^2y\right)+\left(2xy-3x^3+3x^2y-xy^2\right)\)

\(=\left(3xy^2-xy^2\right)+\left(2xy+2xy\right)+\left(-x^3-3x^3\right)+\left(2x^2y+3x^2y\right)\)

\(=2xy^2+4xy-4x^3+5x^2y\)

2)

Để cho \(f\left(x\right)\) có nghiệm thì \(6-3x=0\)

\(\Rightarrow3x=6\)

\(\Rightarrow x=2\)

Để cho \(g\left(x\right)\) có nghiệm thì \(x^2-1=0\)

\(\Rightarrow x^2=1\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

 

 

Bình luận (0)
TH
Xem chi tiết
MN
Xem chi tiết
NL
22 tháng 4 2023 lúc 5:01

Em cần bài nào nhỉ?

Bình luận (1)
NT
22 tháng 4 2023 lúc 8:17

loading...  

Bình luận (0)
TG
Xem chi tiết
DN
Xem chi tiết
NH
24 tháng 12 2021 lúc 19:50

?

Bình luận (0)
SV
24 tháng 12 2021 lúc 19:50

đề bài đâu bn?

Bình luận (0)
DT
24 tháng 12 2021 lúc 19:51

???

Bình luận (0)
VM
Xem chi tiết
H24
27 tháng 12 2021 lúc 19:51

Na =\(\dfrac{4,6}{23}\)=0,2 mol

2Na+Cl2->2NaCl

0,2---0,1-----0,2

=>VCl2=0,1.22,4=2,24l

=>mNaCl=0,2.58,5=11,7g

 

Bình luận (0)
UP
Xem chi tiết
HD
Xem chi tiết
BN
28 tháng 2 2022 lúc 20:21

r

Bình luận (4)
NT
28 tháng 2 2022 lúc 22:18

Câu 6:

\(B=\left(\dfrac{1}{199}+1\right)+\left(\dfrac{2}{198}+1\right)+...+\left(\dfrac{198}{2}+1\right)+1\)

\(=\dfrac{200}{199}+\dfrac{200}{198}+...+\dfrac{200}{2}+\dfrac{200}{200}\)

\(=200\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{198}+\dfrac{1}{199}\right)\)

=200A

=>A/B=1/200

Bình luận (0)
HD
Xem chi tiết
NT
1 tháng 3 2022 lúc 20:00

 Bài 6: 

\(B=\dfrac{1}{199}+1+\dfrac{2}{198}+1+\dfrac{3}{197}+1+...+\dfrac{198}{2}+1+1\)

\(=\dfrac{200}{199}+\dfrac{200}{198}+...+\dfrac{200}{2}+\dfrac{200}{200}\)

\(=200\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{200}\right)=200\cdot A\)

=>A/B=1/200

Bình luận (1)