Rút gọn các phân thức sau:
a) \(\dfrac{x^2-4xy+4y^2}{xy-2y^2}\)
b) \(\dfrac{x^3-36x}{x^2+6x}\)
Rút gọn các phân thức sau:
a) \(\dfrac{6x^2y^2}{8xy^{ }5}\)
b) \(\dfrac{10xy^2\left(x+y\right)}{15xy\left(x+y\right)^3}\)
c) \(\dfrac{2x^2+2x
}{x+1}\)
d) \(\dfrac{x^2-xy-x+y}{x^2+xy-x-y}\)
e) \(\dfrac{36\left(x-2\right)^3}{32-16x}\)
a) \(\dfrac{6x^2y^2}{8xy^5}=\dfrac{3x}{4y^3}\)
b) \(=\dfrac{2y}{3\left(x+y\right)^2}=\dfrac{2y}{3x^2+6xy+3y^2}\)
c) \(=\dfrac{2x\left(x+1\right)}{x+1}=2x\)
d) \(=\dfrac{x\left(x-y\right)-\left(x-y\right)}{x\left(x+y\right)-\left(x+y\right)}=\dfrac{\left(x-y\right)\left(x-1\right)}{\left(x+y\right)\left(x-1\right)}=\dfrac{x-y}{x+y}\)
e) \(=\dfrac{36\left(x-2\right)^3}{-16\left(x-2\right)}=-9\left(x-2\right)^2=-9x^2+36x-36\)
1)Phân tích đa thức thành nhân tử:
a)6x^3-24x^2y+24xy^2
b)x^2-axy-bxy+aby^2
2)Tìm x,biết: 4x^2-(x+1)^2=0
3) Rút gọn các biểu thức sau:
a)(x-3).(x^2+3x+9)-x.(x-1).(x+1)+2.(x+10)
b)x/x-2y+x/x+2y+4xy/4y^2-x^2
Bài 2:
\(\Leftrightarrow\left(x-1\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)
Rút gọn các phân thức sau:
a) \(\dfrac{5x}{10}\)
b)\(\dfrac{4xy}{2y}\) (y≠0)
c)\(\dfrac{5x-5y}{3x-3y}\) (x≠y)
d) \(\dfrac{x^2-y^2}{x+y}\)(chưa có điều kiện xác định)
e) \(\dfrac{x^3-x^2+x-1}{x^2-1}\)(chưa có điều kiện xác định)
f) \(\dfrac{x^2+4x+4}{2x+4}\)(chưa có điều kiện xác định)
a) \(\dfrac{5x}{10}=\dfrac{x}{2}\)
b) \(\dfrac{4xy}{2y}=2x\left(y\ne0\right)\)
c) \(\dfrac{5x-5y}{3x-3y}=\dfrac{5}{3}\left(x\ne y\right)\)
d) \(\dfrac{x^2-y^2}{x+y}=x-y\left(đk:x\ne-y\right)\)
e) \(\dfrac{x^3-x^2+x-1}{x^2-1}=\dfrac{x^2+1}{x+1}\left(đk:x\ne\pm1\right)\)
f) \(\dfrac{x^2+4x+4}{2x+4}=\dfrac{x+2}{2}\left(đk:x\ne-2\right)\)
tối giản biểu thức sau:
a)f(x,y)=\(( \dfrac 1 3 .x+2y)( \dfrac 1 9 x^2 - \dfrac 2 3 xy + 4y^2)\)
b)f(x)=\((x^2-\dfrac 13)(x^4+\dfrac 13x^2+\dfrac 19)\)
( sử dụng các hằng đẳng thức đáng nhớ)
\(\left(\dfrac{1}{3}.x+2y\right)\left(\dfrac{1}{9}x^2-\dfrac{2}{3}xy+4y^2\right)=\left(\dfrac{1}{3}.x\right)^3+\left(2y\right)^3=\dfrac{1}{27}x^3+8y^3\)
b: \(f\left(x\right)=\left(x^2\right)^3-\left(\dfrac{1}{3}\right)^3=x^6-\dfrac{1}{27}\)
rút gọn các biểu thức sau
a)x-2y-\(\sqrt{x^2-4xy+4y^2}\) d)\(\sqrt{\dfrac{x^4-4x^2+4}{x^2-2}}\)
B)\(x^2+\sqrt{x^4-8x^2+16}\) e)\(\sqrt{\left(x^2-4\right)^2}+\dfrac{x-4}{\sqrt{x^2-8x+16}}\)
C)\(2x-1-\sqrt{\dfrac{x^2-10x+25}{x-5}}\)
a) \(x-2y-\sqrt{x^2-4xy+4y^2}\)
\(=x-2y-\sqrt{\left(x-2y\right)^2}\)
\(=x-2y-\left|x-2y\right|\)
TH1: \(x-2y--\left(x-2y\right)\)
\(=x-2y+x-2y\)
\(=2x-4y\)
TH2: \(x-2y-\left(x-2y\right)\)
\(=x-2y-x+2y\)
\(=0\)
b) \(x^2+\sqrt{x^4-8x^2+16}\)
\(=x^2+\sqrt{\left(x^2-4\right)^2}\)
\(=x^2+\left|x^2-4\right|\)
TH1:
\(x^2+-\left(x^2-4\right)\)
\(=x^2-x^2+4\)
\(=4\)
TH2:
\(x^2+\left(x^2-4\right)\)
\(=x^2+x^2-4\)
\(=2x^2-4\)
c) \(2x-1-\sqrt{\dfrac{x^2-10x+25}{x-5}}\) (x>5)
\(=2x-1-\sqrt{\dfrac{\left(x-5\right)^2}{x-5}}\)
\(=2x-1-\sqrt{x-5}\)
d) \(\sqrt{\dfrac{x^4-4x^2+4}{x^2-2}}\) (\(x>\sqrt{2}\))
\(=\sqrt{\dfrac{\left(x^2-2\right)^2}{x^2-2}}\)
\(=\sqrt{x^2-2}\)
e) \(\sqrt{\left(x^2-4\right)^2}+\dfrac{x-4}{\sqrt{x^2-8x+16}}\)
\(=\left|x^2-4\right|+\dfrac{x-4}{\sqrt{\left(x-4\right)^2}}\)
\(=\left|x^2-4\right|+\sqrt{\dfrac{\left(x-4\right)^2}{\left(x-4\right)^2}}\)
\(=\left|x^2-4\right|+1\)
TH1:
\(x^2-4+1\)
\(=x^2-3\)
TH2:
\(-\left(x^2-4\right)+1\)
\(=-x^2+4+1\)
\(=-x^2+5\)
a: \(A=x-2y-\sqrt{x^2-4xy+4y^2}\)
=x-2y-|x-2y|
Khi x>=2y thì A=x-2y-x+2y=0
Khi x<2y thì A=x-2y+x-2y=2x-4y
b: \(B=x^2+\sqrt{x^4-8x^2+16}\)
\(=x^2+\left|x^2-4\right|\)
TH1: x>=2 hoặc x<=-2
B=x^2+x^2-4=2x^2-4
TH2: -2<=x<=2
B=x^2+4-x^2=4
c: \(C=2x-1-\sqrt{\dfrac{x^2-10x+25}{x-5}}\)
\(=2x-1-\sqrt{\dfrac{\left(x-5\right)^2}{x-5}}=2x-1-\sqrt{x-5}\)
d: \(D=\sqrt{\dfrac{x^4-4x^2+4}{x^2-2}}=\sqrt{\dfrac{\left(x^2-2\right)^2}{x^2-2}}=\sqrt{x^2-2}\)
Rút gọn các biểu thức sau:
a) 4x2(5x2 + 3) – 6x(3x3 – 2x + 1) – 5x3 (2x – 1)
b) \(\dfrac{3}{2}x\left( {{x^2} - \dfrac{2}{3}x + 2} \right) - \dfrac{5}{3}{x^2}(x + \dfrac{6}{5})\)
a) 4x2(5x2 + 3) – 6x(3x3 – 2x + 1) – 5x3 (2x – 1)
= 4x2 . 5x2 + 4x2 . 3 – [6x . 3x3 + 6x . (-2x) + 6x . 1] – [5x3 . 2x + 5x3 . (-1)]
= 20x4 + 12x2 – (18x4 – 12x2 + 6x) – (10x4 – 5x3)
= 20x4 + 12x2 - 18x4 + 12x2 - 6x - 10x4 + 5x3
= (20x4 – 18x4 - 10x4 ) + 5x3 + (12x2 + 12x2 ) – 6x
= -8x4 + 5x3 + 24x2 – 6x
\(\begin{array}{l}b)\dfrac{3}{2}x\left( {{x^2} - \dfrac{2}{3}x + 2} \right) - \dfrac{5}{3}{x^2}(x + \dfrac{6}{5})\\ = \dfrac{3}{2}x.{x^2} + \dfrac{3}{2}x.( - \dfrac{2}{3}x) + \dfrac{3}{2}x.2 - (\dfrac{5}{3}{x^2}.x + \dfrac{5}{3}{x^2}.\dfrac{6}{5})\\ = \dfrac{3}{2}{x^3} - {x^2} + 3x - (\dfrac{5}{3}{x^3} + 2{x^2})\\ = \dfrac{3}{2}{x^3} - {x^2} + 3x - \dfrac{5}{3}{x^3} - 2{x^2}\\ = (\dfrac{3}{2}{x^3} - \dfrac{5}{3}{x^3}) + ( - {x^2} - 2{x^2}) + 3x\\ = \dfrac{{ - 1}}{6}{x^3} - 3{x^2} + 3x\end{array}\)
rút gọn phân thức sau
x^2-4xy+4y^2-9y^2/x^2+xy-2y^2
mình không biết nha
Nhớ k cho mình nha
Chúc các bạn học giỏi
Tìm bậc của các đa thức sau:
a) \(x^3y^3+6x^2y^2+12xy-8
\)
b) \(x^2y+2xy^2-3x^3y+4xy^5\)
c) \(x^6y^2+3x^6y^3-7x^5y^7+5x^4y\)
d) \(2x^3+x^4y^5+3xy^7-x^4y^5+10-xy^7\)
e) \(0,5x^2y^3+3x^2y^3z^3-a.x^2y^3-x^4-x^2y^3\) với a là hằng số
a, bậc 6
b, bậc 6
c, bậc 12
d, bậc 9
e, bậc 8
Rút gọn các phân thức sau:
a) \(\dfrac{{3{x^2} + 6xy}}{{6{x^2}}}\) b) \(\dfrac{{2{x^2} - {x^3}}}{{{x^2} - 4}}\) c) \(\dfrac{{x + 1}}{{{x^3} + 1}}\)
a) \(\dfrac{3x^2+6xy}{6x^2}=\dfrac{3x\left(x+2y\right)}{6x^2}=\dfrac{x+2y}{2x}\)
b) \(\dfrac{2x^2-x^3}{x^2-4}=\dfrac{x^2\left(2-x\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{-x^2}{x+2}\)
c) \(=\dfrac{x+1}{x^3+1}=\dfrac{x+1}{\left(x+1\right)\left(x^2+x+1\right)}=\dfrac{1}{x^2+x+1}\)
`a, (3x^2+6xy)/(6x^2) = (x+2y)/(3x)`
`b, (2x^2-x^3)/(x^2-4) = (x^2(2-x))/((x-2)(x+2))`
`= -x^2/(x+2)`
`c, (x+1)/(x^3+1) = 1/(x^2-x+1)`