cho a,b,m thuộc số tự nhiện khác 0
hãy so sánh \(\frac{a+m}{b+m}vs\frac{a}{b}\)
Cho phân số \(\frac{a}{b}< 1\).Hãy so sánh \(\frac{a}{b}\)với phân số \(\frac{a+m}{b+m}\)(m là số tự nhiên khác 0 )
Chỉ cho mình với có cách giải nha
Theo đề bài ta có \(\frac{a}{b}< 1\).
\(\Rightarrow\frac{a+m}{b+m}< 1\)(vì \(\frac{a}{b}< 1\))
Khi \(\frac{a+m}{b+m}< 1\)ta có \(\frac{a}{b}+m\)
\(\Leftrightarrow\)\(\frac{a}{b}< \frac{a+m}{b+m}\)
\(\frac{a}{b}< 1\Rightarrow a< b\Rightarrow am< bm\Rightarrow ab+am< ab+bm\Rightarrow a\left(b+m\right)< b\left(a+m\right)\Rightarrow\frac{a}{b}< \frac{a+m}{b+m}\)
Ta có
A+m/b+m
Mà a/b<1
> a<a+m
B<b+m
> a/b<a+m/b+m
Cho phân số \(\frac{a}{b}\) < 1. Hãy so sánh \(\frac{a}{b}\) với phần số \(\frac{a+m}{b+m}\)(m là số tự nhiên khác 0).
Ta có: \(\frac{a+m}{b+m}\) = \(\frac{\left(a+m\right).b}{b\left(b+m\right)}\) = \(\frac{ab+bm}{b\left(b+m\right)}\) và \(\frac{a}{b}\) = \(\frac{a.\left(b+m\right)}{b\left(b+m\right)}\)= \(\frac{ab+am}{b\left(b+m\right)}\)
Ta có: \(\frac{a}{b}\) < 1 => a<b => am<bm ( m \(\ne\) 0) => ab+ am< ab+bm
=> \(\frac{ab+bm}{b\left(b+m\right)}\) > \(\frac{ab+am}{b\left(b+m\right)}\) => \(\frac{a+m}{b+m}\) > \(\frac{a}{b}\)
Cho phân số \(\frac{a}{b}\) < 1. Hãy so sánh phân số \(\frac{a}{b}\) và \(\frac{a+m}{b+m}\) (m là số tự nhiên khác 0)
Các anh chị giúp em nhanh nha!gấp lắm!
Do \(\frac{a}{b}< 1\)=> a < b
=> a.m < b.m
=> a.m + a.b < b.m + a.b
=> a.(b + m) < b.(a + m)
=> \(\frac{a}{b}< \frac{a+m}{b+m}\)
Cho a,b,m thuộc N*
So sánh \(\frac{a+m}{b+m}\) với \(\frac{a}{b}\)
TH1 : a<b
\(\Rightarrow am< bm\)
\(\Rightarrow ab+am< ab+bm\Rightarrow a\left(b+m\right)< b\left(a+m\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+m}{b+m}\)
TH2 : a=b
\(\Rightarrow am=bm\)
\(\Rightarrow ab+am=ab+bm\Rightarrow a\left(b+m\right)=b\left(a+m\right)\)
\(\Rightarrow\frac{a}{b}=\frac{a+m}{b+m}\)
TH1 : a>b
\(\Rightarrow am>bm\)
\(\Rightarrow ab+am>ab+bm\Rightarrow a\left(b+m\right)>b\left(a+m\right)\)
\(\Rightarrow\frac{a}{b}>\frac{a+m}{b+m}\)
Vậy ... ( có 3 trường hợp )
Cho a,b,m thuộc N*
So sánh \(\frac{a+m}{b+m}\) với \(\frac{a}{b}\)
b1 : so sánh số hữu tỉ \(\frac{a}{b}\) (a,b thuộc Z , b#0) vs số 0 khi a, b cùng dấu và khi a, b khác dấu
b2 : giả sử x= \(\frac{a}{m}\), y= \(\frac{b}{m}\)( a, b ,m thuộc Z, m >0) và x < y . hãy chứng tỏ rằng nếu chọn z = \(\frac{a+b}{2m}\)thì ta có x < z <y
hướng dẫn bài 2 : sử dụng tính chất : Nếu a, c ,c thuộc Z và a<b thì a +c <b +c
b1 thì dễ rùi, mik ko làm nha.b2:
Ta có x = \(\frac{a}{m}\) = \(\frac{a+a}{2m}\); y = \(\frac{b}{m}\) = \(\frac{b+b}{2m}\)
Vì x<y => a<b => a+a<a+b => \(\frac{a+a}{2m}
Cho a,b,m thuộc N*
Hãy so sánh \(\frac{a+m}{b+m}\)với \(\frac{a}{b}\)
Trường hợp a cũng là nguyên duơng
Xét a<b và a>b.
Xét a<b trước, ta có:
1-a/b=(b-a)/a..............(1)
1-(a+1)/(b+1)=(b+1-a-1)/(b+1)=(b-a/(b+1...
Từ (1) và (2) ta thấy: (b-a)/a<(b-a)/(b+1) (vì hai phân số có cùng tử phân số nào mẫu lớn thì phân số đó nhỏ hơn). Mà (b-a)/a>(b-a)/(b+1) =>((a+1)/(b+1)<a/b
Xét a>b, ta đặt a=b+m=>a+n=b+m+n
vậy: a/b=(b+m)/b= 1+m/b.....(3)
(a+n)/(b+n)=(b+m+n)/(b+n)=(b+n+m)/(b+n)...
So sánh (3) và (4) cho ta a/b<(a+n)/(b+n)
Nếu a là nguyên âm thì bạn có trừong hợp ngược lại
Nếu a=0 thì a/b=0 khi đó (a+1)/(b+1)=1/(b+1) >0=a/b
Tuơng tự khi a=0 thì (a+n)/b+n)=n/(b+n)>a/b
Ta xét 3 trường hợp a/b=1; a/b<1; a/b>1
+ trường hợp a/b= 1 nền a=b thi a+b/b+m= a/b=1.
+ trường hợp a/b<1 nên a<b nen a+b< b+m
a+m/b+mco "phan bu" toi 1 la b-a/b+m
a/b có "phần bù" tới 1 là b-a/b, vì b-a/ b+m< b-a/b nên a+m/b+m>a/b
+ trường hợp a/b> 1 nên a>b nên a+m >b+m
a+m/ b+m co "phan thừa" so với 1 la a-b/ b+m
a/b có "phần thừa " so với 1 là a-b/m, vì a-b/b+m< a-b/b nên a+m/b+b<a/b
cho a,b thuộc z ,b khác 0,n thuộc số tự nhiên khác 0 . hãy so sánh 2 số hữu tỉ
\(\frac{a}{b}\)và \(\frac{a+2010}{b+2010}\)
cho a ,b,m thuộc N*
hãy so sánh \(\frac{a+m}{b+m}\)với \(\frac{a}{b}\)
ta xét 3 trường hợp\(\frac{a}{b}\)= 1 ; \(\frac{a}{b}\)< 1 ; \(\frac{a}{b}\)> 1
+ trương hợp \(\frac{a}{b}\)= 1 nên a = b thì \(\frac{a+b}{b+m}\)= \(\frac{a}{b}\)= 1
+ trường hợp \(\frac{a}{b}\)< 1 nên a < b nên a + b < b + m
còn lại tự làm nhé
Giải
Xét 3 tường hợp : \(\frac{a}{b}=1;\frac{a}{b}>1;\frac{a}{b}< 1\)
\(TH1:\frac{a}{b}=1\Leftrightarrow a=b\)
\(\Rightarrow\frac{a+m}{b+m}=\frac{b\left(a=b\right)+m}{b+m}=1\)
\(\Rightarrow\frac{a+m}{b+m}=\frac{a}{b}\)
\(TH2:\frac{a}{b}>1\Leftrightarrow a>b\)
Ta có : \(b\left(a+m\right)< a\left(b+m\right)\) ( tích chéo )
\(\Leftrightarrow ab+bm< ab+am\)
\(\Leftrightarrow bm< am\)( luôn đúng )
\(\Rightarrow\frac{a+m}{b+m}< \frac{a}{b}\)
\(TH3:\frac{a}{b}< 1\Leftrightarrow a< b\)
Ta có : \(b\left(a+m\right)>a\left(b+m\right)\) ( tích chéo )
\(\Leftrightarrow ab+bm>ab+am\)
\(\Leftrightarrow bm>am\)( luôn đúng )
\\(\Rightarrow\frac{a+m}{b+m}>\frac{a}{b}\)