Những câu hỏi liên quan
NA
Xem chi tiết
ND
Xem chi tiết
ND
29 tháng 8 2021 lúc 10:15

ai giúp em bài1 và phần b bài 2 với ạ

 

Bình luận (0)
DV
Xem chi tiết
AH
27 tháng 12 2021 lúc 12:52

Lời giải:

PT $\Leftrightarrow x^2+x(3y-1)+(2y^2-2)=0$

Coi đây là pt bậc 2 ẩn $x$ thì:

$\Delta=(3y-1)^2-4(2y^2-2)=y^2-6y+9=(y-3)^2$. Do đó pt có 2 nghiệm:

$x_1=\frac{1-3y+y-3}{2}=-y-1$

$x_2=\frac{1-3y+3-y}{2}=2-2y$

Đến đây bạn thay vô pt ban đầu để giải pt bậc 2 một ẩn thui.

Bình luận (0)
NT
Xem chi tiết
AN
24 tháng 3 2018 lúc 10:25

\(x^2+2y^2+3xy-x-y+3=0\)

\(\Leftrightarrow\left(x+y\right)\left(x+2y-1\right)=-3\)

Bình luận (0)
2H
Xem chi tiết
NQ
20 tháng 3 2022 lúc 12:52

từ phương trình số 2 ta có 
\(\left(x+y\right)\left(x+2y\right)+\left(x+y\right)=0\Leftrightarrow\left(x+y\right)\left(x+2y+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+y=0\\x+2y+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-y\\x=-2y-1\end{cases}}\)

lần lượt thay vào 1 ta có 

\(\orbr{\begin{cases}y^2+7=y^2+4y\\\left(-2y-1\right)^2+7=y^2+4y\end{cases}\Leftrightarrow\orbr{\begin{cases}y=\frac{7}{4}\\3y^2+8=0\end{cases}}}\)

vậy hệ có nghiệm duy nhất \(x=-y=-\frac{7}{4}\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NO
Xem chi tiết
NL
7 tháng 2 2021 lúc 19:34

\(x^2+2y^2-3xy=0\Leftrightarrow\left(x-y\right)\left(x-2y\right)=0\)

\(\Leftrightarrow x-2y=0\) (do \(x>y\) nên \(x-y>0\))

\(\Leftrightarrow x=2y\)

\(\Rightarrow A=\dfrac{6.2y+16y}{5.2y-3y}=\dfrac{28y}{7y}=4\)

Bình luận (0)
H24
Xem chi tiết
TH
9 tháng 1 2021 lúc 16:32

Ta có \(2y^2⋮2\Rightarrow x^2\equiv1\left(mod2\right)\Rightarrow x^2\equiv1\left(mod4\right)\Rightarrow2y^2⋮4\Rightarrow y⋮2\Rightarrow x^2\equiv5\left(mod8\right)\) (vô lí).

Vậy pt vô nghiệm nguyên.

Bình luận (0)
TH
9 tháng 1 2021 lúc 16:41

2: \(PT\Leftrightarrow3x^3+6x^2-12x+8=0\Leftrightarrow4x^3=\left(x-2\right)^3\Leftrightarrow\sqrt[3]{4}x=x-2\Leftrightarrow x=\dfrac{-2}{\sqrt[3]{4}-1}\).

Bình luận (0)
PN
Xem chi tiết
NT
26 tháng 10 2023 lúc 0:39

\(2\left(x+y\right)+1=3xy\)

=>\(2x+2y-3xy=1\)

=>\(x\left(-3y+2\right)+2y=1\)

=>\(-x\left(3y-2\right)+2y-\dfrac{4}{3}=-\dfrac{1}{3}\)

=>\(-3x\left(y-\dfrac{2}{3}\right)+2\left(y-\dfrac{2}{3}\right)=-\dfrac{1}{3}\)

=>\(-3x\left(3y-2\right)+2\left(3y-2\right)=-1\)

=>\(\left(3y-2\right)\left(-3x+2\right)=-1\)

=>\(\left(3x-2\right)\left(3y-2\right)=1\)

=>\(\left(3x-2;3y-2\right)\in\left\{\left(1;1\right);\left(-1;-1\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(1;1\right);\left(\dfrac{1}{3};\dfrac{1}{3}\right)\right\}\)

mà x,y nguyên

nên (x,y)=(1;1)

 

 

Bình luận (0)