Cho M=1+1/2+1/3+....+1/2100-1
CMR:M<100
M>50
1 + 1 + 2 + 2 + 3 + 3 nhân 100 - 2100 = bao nhiêu???
1 + 1 + 2 + 2 + 3 + 3 x 100 - 2100
= (1 x 2) + (2 x 2) + (3 x 2) x 100 - 2100
= 2 + 4 + 6 x 100 - 2100
= 6 + 6 x 100 - 2100
= 12 x 100 - 2100
= 1200 - 2100
= -900
Bài 5: (1 điểm) Cho A= 2+22+23+24+.....+2100 . Chứng minh A chia hết cho 3.
Lời giải:
$A=(2+2^2)+(2^3+2^4)+....+(2^{99}+2^{100})$
$=2(1+2)+2^3(1+2)+...+2^{99}(1+2)$
$=2.3+2^3.3+...+2^{99}.3$
$=3(2+2^3+...+2^{99})\vdots 3$
Ta có đpcm.
Cho (3x-5)^2018 + (y^2 - 1)^2006 + (x-z)^2100 = 0
Tìm x , y , z
\(\left(3x-5\right)^{2018}+\left(y^2-1\right)^{2006}+\left(x-z\right)^{2100}=0\)
ta có \(\left\{{}\begin{matrix}\left(x-z\right)^{2100}\ge0\\\left(y^2-1\right)^{2006}\ge0\\\left(3x-5\right)^{2018}\ge0\end{matrix}\right.\)
dấu = xảy ra khi \(\left\{{}\begin{matrix}3x-5=0\\y^2-1=0\\z-x=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{3}\\z=x\\\left[{}\begin{matrix}y=1\\y=-1\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=1\\z=\dfrac{5}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=-1\\z=\dfrac{5}{3}\end{matrix}\right.\end{matrix}\right.\)
vậy.................
1/tim x biet
1/3+1/6+1/10+...+1/x(x+1)2=2016/2017
2/
cho A= 1/2.3/4.5/6. .... .9999/10000
so sanh A voi 1%
3/tinh M=1+1/2+1/22+...+1/299+1/21001/2100
Ban nao giai giup mimh voi sang mai minh nop roi
1. Tính:
A= 2100 - 299 -298 - 297 - ......- 22 - 2 - 1
2. Cho dãy số: a1 ; a2 ; a3 ;.....; a100. Trong đó: a1 = 1 ; a2 = -1 ; ak= ak-2 . ak-1
( k thuộc N ; k lớn hơn hoặc bằng 3 )
3. Tính các số nguyên x ; y biết:
a) ( x + 1) ( x - 2 ) = 0
b) ( x - 2 ) ( y - 2 ) = 5
Tìm số tự nhiên n thỏa mãn C n o 1 . 2 + C n 1 2 . 3 + C n 2 3 . 4 + . . . + C n n ( n + 1 ) ( n + 2 ) = 2 100 - n - 3 ( n + 1 ) ( n + 2 )
A. n = 101
B. n = 98
C. n = 99
D. n = 100
Bài 2: Thực hiện phép tính
a/ S= 1+2+2^2+2^3+2^4+2^5+...+2100
b/ Cho x= 2^2012-2^2011-2^2010-2^2009-...-2-1. Tính 2010x
a) \(S=1+2+2^2+...+2^{100}\)
\(2S=2+2^2+2^3+...+2^{101}\)
\(2S-S=\left(2+2^2+...+2^{101}\right)-\left(1+2+...+2^{100}\right)\)
\(S=2^{101}-1\)
b) \(X=2^{2012}-2^{2011}-...-2-1\)
\(X=2^{2012}-\left(1+2+...+2^{2011}\right)\)
Đặt \(X=2^{2012}-Y\)
Ta có :
\(Y=1+2+...+2^{2011}\)
\(2Y=2+2^2+...+2^{2012}\)
\(2Y-Y=\left(2+2^2+...+2^{2012}\right)-\left(1+2+...+2^{2011}\right)\)
\(Y=2^{2012}-1\)
\(\Rightarrow X=2^{2012}-2^{2012}+1\)
\(\Rightarrow X=1\)
\(\Rightarrow2010X=2010\)
Tính: S=1+2+2^2+2^3+2^4+2^5+...+2100
\(S=1+2+2^2+2^3+...+2^{100}\)
\(\Rightarrow2S=2+2^2+2^3+2^4+...+2^{101}\)
\(\Rightarrow2S-S=\left(2+2^2+2^3+...+2^{101}\right)-\left(1+2+2^2+...+2^{100}\right)\)
\(\Rightarrow S=2^{101}-1\)
Vậy \(S=2^{101}-1\)
cho s=1+2+22+23+24+...+299 so sánh S với 2100
Có : \(S=1+2+2^2+2^3+....+2^{99}\)
\(\Rightarrow2S=2+2^2+2^3+....+2^{100}\)
\(\Rightarrow2S-S=\left(2+2^2+2^3+...+2^{100}\right)-\left(1+2+2^2+....+2^{99}\right)\)
\(\Rightarrow S=2^{100}-1< 2^{100}\)
Vậy \(S< 2^{100}\)
S=1+2+22+23+....+299
⇒2S=2+22+23+....+2100
⇒2S−S=2100-1
S=2100-1
vì 2100 -1<2100
⇒S<2100
1. Chứng minh rằng
A = 2 + 22 + 23 + ... + 2100 chia hết cho 2,3 và 30
2. Chứng minh rằng
B = 3 + 32 + 33 + ... + 32022 chia hết cho 12 và 15
1: \(A=2+2^2+2^3+2^4+...+2^{97}+2^{98}+2^{99}+2^{100}\)
\(=2\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^2+2^3\right)\)
\(=15\left(2+2^5+...+2^{97}\right)\)
\(=30\left(1+2^4+...+2^{96}\right)⋮30\)
2:
\(B=3+3^2+3^3+...+3^{2022}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2021}+3^{2022}\right)\)
\(=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{2020}\left(3+3^2\right)\)
\(=12\left(1+3^2+...+3^{2020}\right)⋮12\)