Những câu hỏi liên quan
NN
Xem chi tiết
NS
7 tháng 11 2016 lúc 18:19

1 + 1 + 2 + 2 + 3 + 3 x 100 - 2100
= (1 x 2) + (2 x 2) + (3 x 2) x 100 - 2100
= 2 + 4 + 6 x 100 - 2100
= 6 + 6 x 100 - 2100
= 12 x 100 - 2100
= 1200 - 2100
= -900

Bình luận (0)
SV
7 tháng 11 2016 lúc 18:02

âm 24000 tức là -24000

Bình luận (0)
NQ
7 tháng 11 2016 lúc 18:02

BẰNG ÂM 900 NHÉ

Bình luận (0)
TP
Xem chi tiết
AH
13 tháng 12 2021 lúc 22:00

Lời giải:
$A=(2+2^2)+(2^3+2^4)+....+(2^{99}+2^{100})$
$=2(1+2)+2^3(1+2)+...+2^{99}(1+2)$

$=2.3+2^3.3+...+2^{99}.3$

$=3(2+2^3+...+2^{99})\vdots 3$

Ta có đpcm.

Bình luận (0)
LA
Xem chi tiết
RT
10 tháng 11 2018 lúc 15:29

\(\left(3x-5\right)^{2018}+\left(y^2-1\right)^{2006}+\left(x-z\right)^{2100}=0\)

ta có \(\left\{{}\begin{matrix}\left(x-z\right)^{2100}\ge0\\\left(y^2-1\right)^{2006}\ge0\\\left(3x-5\right)^{2018}\ge0\end{matrix}\right.\)

dấu = xảy ra khi \(\left\{{}\begin{matrix}3x-5=0\\y^2-1=0\\z-x=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{3}\\z=x\\\left[{}\begin{matrix}y=1\\y=-1\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=1\\z=\dfrac{5}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=-1\\z=\dfrac{5}{3}\end{matrix}\right.\end{matrix}\right.\)

vậy.................

Bình luận (0)
LT
Xem chi tiết
DN
Xem chi tiết
PB
Xem chi tiết
CT
14 tháng 10 2018 lúc 9:47

Bình luận (0)
HM
Xem chi tiết
TP
8 tháng 1 2019 lúc 20:07

a) \(S=1+2+2^2+...+2^{100}\)

\(2S=2+2^2+2^3+...+2^{101}\)

\(2S-S=\left(2+2^2+...+2^{101}\right)-\left(1+2+...+2^{100}\right)\)

\(S=2^{101}-1\)

b) \(X=2^{2012}-2^{2011}-...-2-1\)

\(X=2^{2012}-\left(1+2+...+2^{2011}\right)\)

Đặt \(X=2^{2012}-Y\)

Ta có :

\(Y=1+2+...+2^{2011}\)

\(2Y=2+2^2+...+2^{2012}\)

\(2Y-Y=\left(2+2^2+...+2^{2012}\right)-\left(1+2+...+2^{2011}\right)\)

\(Y=2^{2012}-1\)

\(\Rightarrow X=2^{2012}-2^{2012}+1\)

\(\Rightarrow X=1\)

\(\Rightarrow2010X=2010\)

Bình luận (0)
AW
Xem chi tiết
MV
4 tháng 1 2019 lúc 10:28

\(S=1+2+2^2+2^3+...+2^{100}\)

\(\Rightarrow2S=2+2^2+2^3+2^4+...+2^{101}\)

\(\Rightarrow2S-S=\left(2+2^2+2^3+...+2^{101}\right)-\left(1+2+2^2+...+2^{100}\right)\)

\(\Rightarrow S=2^{101}-1\)

Vậy \(S=2^{101}-1\)

Bình luận (0)
H24
Xem chi tiết
H24
4 tháng 1 2021 lúc 12:28

Có : \(S=1+2+2^2+2^3+....+2^{99}\)

\(\Rightarrow2S=2+2^2+2^3+....+2^{100}\)

\(\Rightarrow2S-S=\left(2+2^2+2^3+...+2^{100}\right)-\left(1+2+2^2+....+2^{99}\right)\)

\(\Rightarrow S=2^{100}-1< 2^{100}\)

Vậy \(S< 2^{100}\)

Bình luận (0)
IT
4 tháng 1 2021 lúc 19:55

 S=1+2+22+23+....+299

⇒2S=2+22+23+....+2100

⇒2S−S=2100-1

S=2100-1

vì 2100 -1<2100

⇒S<2100

 

Bình luận (0)
VN
Xem chi tiết
NT
13 tháng 11 2023 lúc 18:20

1: \(A=2+2^2+2^3+2^4+...+2^{97}+2^{98}+2^{99}+2^{100}\)

\(=2\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^2+2^3\right)\)

\(=15\left(2+2^5+...+2^{97}\right)\)

\(=30\left(1+2^4+...+2^{96}\right)⋮30\)

2:

\(B=3+3^2+3^3+...+3^{2022}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2021}+3^{2022}\right)\)

\(=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{2020}\left(3+3^2\right)\)

\(=12\left(1+3^2+...+3^{2020}\right)⋮12\)

 

Bình luận (0)