Những câu hỏi liên quan
TN
Xem chi tiết
NM
2 tháng 12 2021 lúc 15:50

\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)

Bình luận (3)
VB
Xem chi tiết
TA
Xem chi tiết
HK
Xem chi tiết
MQ
Xem chi tiết
QE
Xem chi tiết
NT
20 tháng 7 2021 lúc 10:21

undefined

Bình luận (0)
NL
Xem chi tiết
GH
6 tháng 7 2023 lúc 15:27

1

\(\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow AB=\dfrac{3}{.4}AC\)

Theo pytago xét tam giác ABC vuông tại A có:

\(\sqrt{AB^2+AC^2}=BC^2\\ \Rightarrow\sqrt{\left(\dfrac{3}{4}AC\right)^2+AC^2}=10\\ \Rightarrow AC=8\\ \Rightarrow AB=\dfrac{3.8}{4}=6\)

Theo hệ thức lượng xét tam giác ABC vuông tại A, đường cao AH có:

\(AB^2=BH.BC\\ \Leftrightarrow BH=\dfrac{AH^2}{BC}=\dfrac{6^2}{10}=3,6\)

2

\(\dfrac{AB}{AC}=\dfrac{27}{4}\Rightarrow AB=\dfrac{27}{4}AC\)

\(BC=\sqrt{AB^2+AC^2}=\sqrt{\left(\dfrac{27}{4}AC\right)^2+AC^2}=\dfrac{\sqrt{745}AC}{4}\) ( Theo pytago trong tam giác ABC vuông tại A)

Theo hệ thức lượng trong tam giác ABC vuông tại A, đường cao AH có:

\(AH.BC=AB.AC\\ \Leftrightarrow33,6.\dfrac{\sqrt{745}}{4}AC=\dfrac{27}{4}AC.AC\\ \Rightarrow AC=\dfrac{56\sqrt{745}}{45}\)

\(\Rightarrow\left\{{}\begin{matrix}AB=\dfrac{27}{4}.\dfrac{56\sqrt{745}}{45}=\dfrac{42\sqrt{745}}{5}\\BC=\dfrac{\sqrt{745}}{4}.\dfrac{56\sqrt{745}}{45}=\dfrac{2086}{9}\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}AC\approx33,97\\AB\approx229,28\\BC\approx231,78\end{matrix}\right.\)

3

`BC=HB+HC=36+64=100`

Theo hệ thức lượng có (trong tam giác ABC vuông tại A đường cao AH):

\(AH^2=HB.HC\\ \Rightarrow AH=\sqrt{36.64}=48\)

\(AB=\sqrt{HB.BC}=\sqrt{36.100}=60\\ AC=\sqrt{HC.BC}=\sqrt{64.100}=80\)

Bình luận (0)
LH
Xem chi tiết
LD
8 tháng 5 2020 lúc 8:07

a) Theo đề bài ta có :

BC2 = 52 = 25

AB2 + AC2 = 42 + 32 = 16 + 9 = 25

=> BC2 = AB2 + AC2 ( định lý Pytago đảo )

=> Tam giác ABC vuông ( đpcm )

b) \(C_{\Delta ABC}=AB+AC+BC=3+4+5=12cm\)

Bình luận (0)
 Khách vãng lai đã xóa
NC
Xem chi tiết
NT
3 tháng 2 2021 lúc 21:22

Áp dụng định lí Pytago vào ΔABD vuông tại A, ta được:

\(BD^2=AB^2+AD^2\)

\(\Leftrightarrow AB^2=BD^2-AD^2=\left(4\sqrt{10}\right)^2-4^2=144\)

hay AB=12(cm)

Xét ΔABD vuông tại A có

\(\tan\widehat{ABD}=\dfrac{AD}{AB}=\dfrac{4}{12}=\dfrac{1}{3}\)

hay \(\widehat{ABD}\simeq18^026'\)

mà \(\widehat{ABC}=2\cdot\widehat{ABD}\)(BD là tia phân giác của \(\widehat{ABC}\))

nên \(\widehat{ABC}\simeq36^052'\)

Xét ΔABC vuông tại A có

\(AC=AB\cdot\tan\widehat{ABC}\)

\(\Leftrightarrow AC=12\cdot\tan36^052'\simeq9\)(cm)

Ta có: ΔABC vuông tại A(gt)

nên \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{12\cdot9}{2}=\dfrac{108}{2}=54\left(cm^2\right)\)

Bình luận (0)
TN
Xem chi tiết
NT
18 tháng 8 2021 lúc 0:04

Ta có: \(\dfrac{AB}{AC}=\dfrac{3}{4}\)

nên \(AB=\dfrac{3}{4}AC\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow\dfrac{1}{\dfrac{9}{16}AC^2}+\dfrac{1}{AC^2}=\dfrac{1}{576}\)

\(\Leftrightarrow AC^2\cdot\dfrac{9}{16}=576\cdot\dfrac{25}{16}=900\)

\(\Leftrightarrow AC^2=1600\left(cm\right)\)

\(\Leftrightarrow AC=40\left(cm\right)\)

\(\Leftrightarrow AB=30\left(cm\right)\)

\(\Leftrightarrow BC=50cm\)

Bình luận (0)