Những câu hỏi liên quan
BM
Xem chi tiết
L7
Xem chi tiết
L7
1 tháng 3 2022 lúc 22:20

giúp mình với

Bình luận (0)
GL
1 tháng 3 2022 lúc 22:23

Đặt ab=cd=k

 

Khi đó ta có :

a=bk và c=dk

Suy ra :

a2-b2c2-d2=(bk)2-b2(dk)2-d2

=b2k2-b2d2k2-d2

=b2.(k2-1)d2.(k2-1)

=b2d2(1)

Ta lại có :

Bình luận (0)
GL
1 tháng 3 2022 lúc 22:23

 

Đặt ab=cd=k

Khi đó ta có :

a=bk và c=dk

Suy ra :

a2-b2c2-d2=(bk)2-b2(dk)2-d2

=b2k2-b2d2k2-d2

=b2.(k2-1)d2.(k2-1)

=b2d2(1)

Ta lại có :

Bình luận (0)
DX
Xem chi tiết
TC
9 tháng 8 2021 lúc 16:50

undefined

Bình luận (0)
TN
Xem chi tiết
AH
22 tháng 9 2021 lúc 18:56

Lời giải:

Đặt $\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt; c=dt$. Ta có:

$\frac{ab}{cd}=\frac{b^2t}{d^2t}=\frac{b^2}{d^2}(1)$

Mặt khác:

$\frac{(a-b)^2}{(c-d)^2}=\frac{(bt-b)^2}{(dt-d)^2}=\frac{b^2(t-1)^2}{d^2(t-1)^2}=\frac{b^2}{d^2}(2)$

Từ $(1); (2)\Rightarrow \frac{ab}{cd}=\frac{(a-b)^2}{(c-d)^2}$

Bình luận (0)
NL
Xem chi tiết
WK
Xem chi tiết
HG
24 tháng 11 2015 lúc 18:58

\(\frac{a}{b}=\frac{c}{d}\)

=> \(\frac{a}{c}=\frac{b}{d}\)

=> \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}\)(Tính chất dãy tỉ số bằng nhau)

=> \(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}\)(Đpcm)

 

Bình luận (0)
CB
Xem chi tiết
TM
22 tháng 6 2016 lúc 14:59

1, a) \(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\Rightarrow\frac{a}{c}=\frac{b}{d}\)

áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)

=> b(c-d)=d(a-b)

=>  \(\frac{c-d}{d}=\frac{a-b}{b}\)(đpcm)

2, Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

\(\Rightarrow\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2k}{d^2k}=\frac{b^2}{d^2}\) (1)

Mặt khác: \(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\frac{b^2\left(k-1\right)^2}{d^2\left(k-1\right)^2}=\frac{b^2}{d^2}\)(2)

Từ (1) và (2) => \(\frac{ab}{cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)(đpcm)

Hình như đề của bạn sai 1 số chỗ

Bình luận (0)
NS
Xem chi tiết
DT
22 tháng 10 2020 lúc 20:17

Lần sau bạn cho thêm cả dấu ngoặc cho dễ hiểu nhé :v

Đặt \(\frac{a}{b}=\frac{c}{d}=k\) => \(\left\{{}\begin{matrix}a=b.k\\c=d.k\end{matrix}\right.\) \(\left(b,d\ne0\right)\)

Thay \(\left\{{}\begin{matrix}a=b.k\\c=d.k\end{matrix}\right.\) vào \(\frac{a^2-b^2}{ab}\)\(\frac{c^2-d^2}{cd}\) ta có :

\(\left\{{}\begin{matrix}\frac{\left(b.k\right)^2-b^2}{b.k.b}\\\frac{\left(d.k\right)^2-d^2}{d.k.d}\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\frac{b^2.k^2-b^2}{b^2.k}\\\frac{d^2.k^2-d^2}{d^2.k}\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\frac{b^2\left(k^2-1\right)}{b^2.k}\\\frac{d^2\left(k^2-1\right)}{d^2.k}\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}\frac{k^2-1}{k}\\\frac{k^2-1}{k}\end{matrix}\right.\)(vì b,d khác 0 nên \(b^2,d^2\) khác 0)

=> \(\frac{a^2-b^2}{ab}\) = \(\frac{c^2-d^2}{cd}\) (vì cùng bằng \(\frac{k^2-1}{k}\))

vậy \(\frac{a^2-b^2}{ab}\) = \(\frac{c^2-d^2}{cd}\) nếu \(\frac{a}{b}=\frac{c}{d}\)

lâu lắm không làm nên không chắc đâu :v

Bình luận (0)
 Khách vãng lai đã xóa
NS
Xem chi tiết
QD
31 tháng 5 2016 lúc 20:14

(a² + b²) / (c² + d²) = ab/cd 
<=> (a² + b²)cd = ab(c² + d²) 
<=> a²cd + b²cd = abc² + abd² 
<=> a²cd - abc² - abd² + b²cd = 0 
<=> ac(ad - bc) - bd(ad - bc) = 0 
<=> (ac - bd)(ad - bc) = 0 
<=> ac - bd = 0 hoặc ad - bc = 0 
<=> ac = bd hoặc ad = bc 
<=> a/b = d/c hoặc a/b = c/d (đpcm)

Bình luận (2)
TD
2 tháng 9 2019 lúc 13:50

hello ib ko

Bình luận (0)
HD
5 tháng 1 2020 lúc 20:56
https://i.imgur.com/ykdB9uk.jpg
Bình luận (0)
 Khách vãng lai đã xóa