NT

Cho  tỉ lệ thức a/b=c/d. Chứng minh rằng: ab/cd=a^2-b^2/c^2-d^2 và (a+b/c+d)=a^2+b^2/c^2+d^2

AH
25 tháng 10 2024 lúc 23:54

Lời giải:

Đặt $\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk$. Khi đó:

$\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}(1)$

$\frac{a^2-b^2}{c^2-d^2}=\frac{(bk)^2-b^2}{(dk)^2-d^2}=\frac{b^2(k^2-1)}{d^2(k^2-1)}=\frac{b^2}{d^2}(2)$

Từ $(1); (2)$ ta có đpcm

------------------------

Lại có:

$(\frac{a+b}{c+d})^2=(\frac{bk+b}{dk+d})^2=(\frac{b(k+1)}{d(k+1)})^2=(\frac{b}{d})^2(3)$

$\frac{a^2+b^2}{c^2+d^2}=\frac{(bk)^2+b^2}{(dk)^2+d^2}=\frac{b^2(k^2+1)}{d^2(k^2+1)}=\frac{b^2}{d^2}=(\frac{b}{d})^2(4)$

Từ $(3); (4)$ ta có đpcm.

Bình luận (0)

Các câu hỏi tương tự
BM
Xem chi tiết
L7
Xem chi tiết
TN
Xem chi tiết
NL
Xem chi tiết
WK
Xem chi tiết
CB
Xem chi tiết
NB
Xem chi tiết
LT
Xem chi tiết
H24
Xem chi tiết