chứng minh:1/2<s<1
s=1/11+1/12+1/13+...+1/20
chứng minh rằng 1+1=2
chứng minh rằng 1=2
1+1=2 là vì các bạn lấy ví dụ ra: 1 cái khăn + 1 cái khăn = 2 cái khăn đơn giản
câu dưới mình ko biết sorry nha
vì 1+1 thì nó bằng 2
trong trò oản tù tì xiên là 1 kéo là 2 nên hai cái đó bẳng nhau
1+1 = 2 đây là kiến thức cơ bản
1=2 vì 1 đôi giày = 2 chiếc giày
Cho a>2, b>2.
a) Chứng minh a.b > a+b
b) Chứng minh a^2+b^2+c^2 ≥ ab+bc+ca
c) Chứng minh a^2+b^2+c^2+3 ≥ 2.(a+b+c)
d) Chứng minh a^2+b^2 ≥ 1/2 với a+b=1
e) Chứng minh a^2+b^2+c^2 ≥ 1/3 với a+b+c=1
chứng minh: a= 1/2 mũ 2+1/3 mũ 2+1/4 mũ 2+.....+1/2013 mũ 2 .Chứng minh A <3/4
\(A=\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{3}\right)^2+\left(\dfrac{1}{4}\right)^2+...+\left(\dfrac{1}{2013}\right)^2\)
\(A=\left(\dfrac{1}{2+3+4+...+2013}\right)^2\)
\(A=\left(\dfrac{1}{\left(2013-2\right)+1}\right)^2\)
\(A=\left(\dfrac{1}{2012}\right)^2\)
\(A=\dfrac{1}{2012\cdot2012}\)
\(\Rightarrow A=\dfrac{1}{2012}< \dfrac{3}{4}\)
1. Chứng minh a + 4b = 1 thì 5 ( a2 + 4b2 ) >= 1
2. Chứng minh x + y = 1 thì 2 ( x2 + y2 ) >= 1
3, Cho a = b + 1 . Chứng minh a > b
4. Chứng minh ( x + 1 )2 >= 4x
Mn giúp mk vs
Bài 1:
Ta có: (2a-2b)2 lớn hơn hặc bằng 0
<=> 4a2-8ab+4b2 lớn hơn hoặc bằng 0
<=> 5a2-a2-8ab+20b2-16b2 lớn hơn hoặc bằng 0
<=> 5a2+20b2 lớn hơn hoặc bằng a2+8ab+16b
<=> 5(a2+4b2) lớn hơn hoặc bằng (a+4b)2
<=> 5(a2+4b2) lớn hơn hoặc bằng 1 [ Thay (a+4b)2 =1]
3)
\(a=b+1\Leftrightarrow a+1>b+1\Leftrightarrow a>b+1-1\\ \Leftrightarrow a>b\)
bài 2:
Giả sử 2(x2+y2)<1 => 2(x2+y2)-1<0
=> \(2\left(x^2+y^2-\dfrac{1}{2}\right)< 0\)
=> \(2\left(x^2+2xy+y^2-2xy-\dfrac{1}{2}\right)< 0\)
=> \(2\left[\left(x+y\right)^2-2xy-\dfrac{1}{2}\right]< 0\) (Thay x+y=1)
=> \(2\left(1-2xy-\dfrac{1}{2}\right)< 0\)
=> \(2\left(\dfrac{1}{2}-2xy\right)< 0\) => 1-2xy<0
=> 1<2xy <=> 12 <2xy <=> (x+y)2 <2xy (vô lí)
Vậy 2(x2+y2) phải lớn hơn hoặc bằng 1
Câu 1 : Chứng minh rằng : 3 - 4sin2x = 4cos2x - 1Câu 2 : Chứng minh rằng : cos4x - sin4x = 2cos2x - 1 = 1 - 2sin2xCâu 3 : Chứng minh rằng : sin4x + cos4x = 1 - 2sin2xCos2x
1/ \(3-4\sin^2=4\cos^2x-1\Leftrightarrow4\left(\sin^2x+\cos^2x\right)-4=0\Leftrightarrow4.1-4=0\left(ld\right)\Rightarrow dpcm\)
2/ \(\cos^4x-\sin^4x=\left(\cos^2x+\sin^2x\right)\left(\cos^2x-\sin^2x\right)=\cos^2x-\left(1-\cos^2x\right)=2\cos^2x-1=\left(1-\sin^2x\right)-\sin^2x=1-2\sin^2x\)
3/ \(\sin^4x+\cos^4x=\left(\sin^2x+\cos^2x\right)^2-2\sin^2x.\cos^2x=1-2\sin^2x.\cos^2x\)
Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2 =0
Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|
Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| < |a − b|
Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1
Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2
Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4
Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2
Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)
2 = 0
Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|
Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| 6 |a − b|
Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1
Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2
Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4
Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2
A=1/2^2+1/100^2 Chứng minh rằng A<1
B=1/1^2+1/1^2+1/3^2+...+1/100^2 Chứng minh rằng B<1 3/4 (hỗn số nhé)
C=1/1^2+1/4^2+1/6^2+...+1/100^2 Chứng minh rằng C<1/2
D=1/4^2+1/5^2+1/6^2+...+1/99^2+1/100^2 Chứng minh rằng 1/5<D<1/3
Giup mình nha mình đang cần gấp
a>
\(\frac{1}{2^2}+\frac{1}{100^2}\)=1/4+1/10000
ta có 1/4<1/2(vì 2 đề bài muốn chứng minh tổng đó nhỏ 1 thì chúng ta phải xét xem có bao nhiêu lũy thừa hoặc sht thì ta sẽ lấy 1 : cho số số hạng )
1/100^2<1/2
=>A<1
Cho tam giác ABC vuông tại A, đường cao AH.
a. chứng minh AB2 = BH . BC và AC2 = CH.BC
b. Chứng minh BC2 = AB2 +AC2
c. chứng minh: AH2 = BH.CH
d. chứng minh: AH.BC=AB.AC
e. chứng minh: 1/AH2 = 1/AB2 + 1/AC2
a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có
góc B chung
Do đó: ΔABH\(\sim\)ΔCBA
Suy ra: BA/BC=BH/BA
hay \(BA^2=BH\cdot BC\)
Xét ΔACH vuông tại H và ΔBCA vuông tại A có
góc C chung
Do đo: ΔACH\(\sim\)ΔBCA
Suy ra: CA/CB=CH/CA
hay \(CA^2=CH\cdot CB\)
b: \(BC^2=AB^2+AC^2\)
c: Xét ΔAHB vuông tại H và ΔCHA vuông tại H có
\(\widehat{HAB}=\widehat{HCA}\)
Do đó: ΔAHB\(\sim\)ΔCHA
Suy ra: HA/HC=HB/HA
hay \(HA^2=HB\cdot HC\)
1)Chứng minh 1=2?
2)Chứng minh 1+1>2?
Đố vui đó! Ai giải được mình tick cho
Trả lời:
1)1 đôi dép=2 cái dép
2)Vì câu 1) đã chứng minh1=2 =>1+1>2