tìm giá trị nhỏ nhất x2+y2+xy-5x-4y+2002, đề violimpic cấp huyện năm 2013-2014 đấy
Tìm giá trị nhỏ nhất của A=x2+y2+xy-5x-4y+2002
A=x2+y2+xy-5x-4y+2002
2A=x2+2xy+y2+x2-10x+25+y2-8y+16+1961
2A=\(\left(x+y\right)^2+\left(x-5\right)^2+\left(y-4\right)^2+1961\ge1961\)
tìm min x2+y2+xy-5x-4y+2002
nhân 2 lên rồi ghếp hằng đẳng thức
Biết x2+4y2+9z2=3 Tìm GTLN của S=2x+4y+6x
Cho x;y ∈ 𝑅 thỏa mãn x2+y2 -xy=4 . Tìm giá trị lớn nhất và nhỏ nhất của C= x2+y2
a) Áp dụng bất đẳng thức Cosi ta có :
\(x^2+1\geq 2x\\ 4y^2+1\geq 4y\\ 9z^2+1\geq 6z\)
Suy ra \(S\leq 6\)
Dấu = xảy ra khi \(x=1;y=\frac{1}{2}; z=\frac{1}{3}\)
a. Cho x3 + y3 + 3(x2 + y2) + 4(x + y) + 4 = 0 và xy > 0
Tìm giá trị lớn nhất của
b. Với a, b, c là các số thực dương. Chứng minh rằng:
Giá trị nhỏ nhất của biểu thức A= x² + y² + xy- 5x- 4y + 2002 là
2A= (x2 + y2 + 2xy) + (x2 -10x + 25) + (y2 – 8y + 16) +2002 – (16+25)
2A= (x + y)2 + (x - 5)2 + (y - 4)2 + 1961.
Từ biểu thức tổng của các số dương trên ta so sánh từng cặp giá trị (x;y) sao cho các số dương trên nhận giá trị bằng 0 ta có các cặp như sau: (0;0); (0;4); (5;0); (5;4) ta tìm GTNN của A là ½(1961+25+16)
Giá trị nhỏ nhất của biểu thức A=x2+y2+xy-5x-4y+2002 là
tìm giá trị nhỏ nhất:
x2+y2+xy-5x-4y+2002
(mk thấy bài này có 3 cách giải, bạn nào có thể liệt kê xem bài này có mấy cách ko !>?)
2(x^2+y^2+xy-5x-4y+2002)=(x+y-2)^2+(x-3)^2+(y-2)^2+3987>=(x+y-2+3-x+2-y)^2/3+3987=3+3987=3990
=>gtnt=1995
tìm giá trị nhỏ nhất:
x2+y2+xy-5x-4y+2002
(mk thấy bài này có 3 cách giải, bạn nào có thể liệt kê xem bài này có mấy cách ko !>?)
dù là cách nào đi nữa thì kết quả vẫn như nhau
Bài 1: Tìm giá trị nhỏ nhất của:
a) A= x2 + 2x + 4
b) B= x2 - 20x + 101
c) C= x2 - 2x + y2 + 4y + 8
Bài 2: Tìm giá trị lớn nhất của:
A = 5 - 8x - x2
B = x - x2
C = 4x - x2 + 3
D = -x2 + 6x - 11
Bài 1:
a: \(A=x^2+2x+4\)
\(=x^2+2x+1+3\)
\(=\left(x+1\right)^2+3>=3\forall x\)
Dấu '=' xảy ra khi x+1=0
=>x=-1
Vậy: \(A_{min}=3\) khi x=-1
b: \(B=x^2-20x+101\)
\(=x^2-20x+100+1\)
\(=\left(x-10\right)^2+1>=1\forall x\)
Dấu '=' xảy ra khi x-10=0
=>x=10
Vậy: \(B_{min}=1\) khi x=10
c: \(C=x^2-2x+y^2+4y+8\)
\(=x^2-2x+1+y^2+4y+4+3\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+3>=3\forall x\)
Dấu '=' xảy ra khi x-1=0 và y+2=0
=>x=1 và y=-2
Vậy: \(C_{min}=3\) khi (x,y)=(1;-2)
Bài 2:
a: \(A=5-8x-x^2\)
\(=-\left(x^2+8x\right)+5\)
\(=-\left(x^2+8x+16-16\right)+5\)
\(=-\left(x+4\right)^2+16+5=-\left(x+4\right)^2+21< =21\forall x\)
Dấu '=' xảy ra khi x+4=0
=>x=-4
b: \(B=x-x^2\)
\(=-\left(x^2-x\right)\)
\(=-\left(x^2-x+\dfrac{1}{4}-\dfrac{1}{4}\right)\)
\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}< =\dfrac{1}{4}\forall x\)
Dấu '=' xảy ra khi \(x-\dfrac{1}{2}=0\)
=>\(x=\dfrac{1}{2}\)
c: \(C=4x-x^2+3\)
\(=-x^2+4x-4+7\)
\(=-\left(x^2-4x+4\right)+7\)
\(=-\left(x-2\right)^2+7< =7\forall x\)
Dấu '=' xảy ra khi x-2=0
=>x=2
d: \(D=-x^2+6x-11\)
\(=-\left(x^2-6x+11\right)\)
\(=-\left(x^2-6x+9+2\right)\)
\(=-\left(x-3\right)^2-2< =-2\forall x\)
Dấu '=' xảy ra khi x-3=0
=>x=3