Những câu hỏi liên quan
RH
Xem chi tiết
PB
Xem chi tiết
CT
13 tháng 4 2019 lúc 6:27

c)Ta có: x2 + y2 – 2x + 4y + 5 = (x2 – 2x + 1) + (y2 + 4y + 4)

= (x – 1)2 + (y + 2)2

Vậy (x – 1)2 + (y + 2)2 = 0 ⇒ x – 1 = 0 hay y + 2 = 0

⇒ x = 1 hoặc y = -2

Bình luận (0)
TT
Xem chi tiết
TT
8 tháng 3 2016 lúc 21:13

giúp mình với

Bình luận (0)
GT
8 tháng 3 2016 lúc 21:31

đề kiểu gì vậy bạn

Bình luận (0)
PN
8 tháng 3 2016 lúc 22:06

Đề không có bộ vế trái-vế phải thì bạn định giải bằng niềm tin hả?

Bình luận (0)
PB
Xem chi tiết
CT
23 tháng 8 2018 lúc 4:09

Bình luận (0)
PB
Xem chi tiết
CT
13 tháng 4 2019 lúc 14:55

Phương trình  1 ⇔ x + y 2 x - y = 0 ⇔ x = − y 2 x = y

Trường hợp 1:  x = - y  thay vào (2) ta được  x 2 - 4 x + 3 = 0 ⇔ x = 1 x = 3

Suy ra hệ phương trình có hai nghiệm là (1; −1), (3; −3).

Trường hợp 2:  2 x = y  thay vào (2) ta được  - 5 x 2 + 17 x + 3 = 0  phương trình này không có nghiệm nguyên.

Vậy các cặp nghiệm (x; y) sao cho x, y đều là các số nguyên là (1; −1) và (3; −3).

Đáp án cần chọn là: C

Bình luận (0)
MN
Xem chi tiết
NT
10 tháng 3 2022 lúc 8:08

a: \(=3x^4+3x^2y^2+2x^2y^2+2y^4+y^2\)

\(=\left(x^2+y^2\right)\left(3x^2+2y^2\right)+y^2\)

\(=3x^2+3y^2=3\)

b: \(=7\left(x-y\right)+4a\left(x-y\right)-5=-5\)

c: \(=\left(x-y\right)\left(x^2+xy+y^2\right)+xy\left(y-x\right)+3=3\)

d: \(=\left(x+y\right)^2-4\left(x+y\right)+1\)

=9-12+1

=-2

Bình luận (0)
H24
Xem chi tiết
NY
Xem chi tiết
TT
12 tháng 1 2021 lúc 22:35

\(x^2-2x+y^2+4y-4< 0\)

⇔ \(\left(x-1\right)^2+\left(y+2\right)^2< 9\)

Mà \(\left(x-1\right)^2\ge0;\left(y+2\right)^2\ge0\) và 2 số này đều là bình phương của một số nguyên

Nên ta có các trường hơpj

TH1 : \(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\)  \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\) (TM)

TH2 : \(\left\{{}\begin{matrix}\left(x-1\right)^2=1\\\left(y+2\right)^2=1\end{matrix}\right.\) .....

TH3 : \(\left\{{}\begin{matrix}\left(x-1\right)^2=4\\\left(y+2\right)^2=1\end{matrix}\right.\) .....

Thôi tự túc mấy trường hợp còn lại. Nghi đề sai lắm :((

 

Bình luận (2)
TT
12 tháng 1 2021 lúc 22:57

⇔ \(\left(x-1\right)^2+\left(y+2\right)^2< 1\)

Mà \(\left(x-1\right)^2;\left(y+2\right)^2\ge0\forall x;y\)  2 số này đều là bình phương của một số nguyên

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

Bình luận (0)
QL
Xem chi tiết
HN
19 tháng 12 2017 lúc 17:41

\(x^2-y^2+2x-4y-10=0\)

\(\Leftrightarrow x^2+2x+1-y^2-4y-4-7=0\)

\(\Leftrightarrow\left(x+1\right)^2-\left(y+2\right)^2=7\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)^2=16\\\left(y+2\right)^2=9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x+1=4\\x+1=-4\left(l\right)\end{matrix}\right.\\\left[{}\begin{matrix}y+2=3\\y+2=-3\left(l\right)\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)

Vậy x = 3; y = 1.

Bình luận (1)