Những câu hỏi liên quan
CT
Xem chi tiết
DT
Xem chi tiết
CG
Xem chi tiết
DH
9 tháng 6 2021 lúc 10:26

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\frac{ab+bc+ca}{abc}=\frac{1}{a+b+c}\)

\(\Rightarrow\left(ab+bc+ca\right)\left(a+b+c\right)=abc\)

\(\Leftrightarrow ab^2+a^2b+ac^2+a^2c+bc^2+b^2c+2abc=0\)

\(\Leftrightarrow ab^2+a^2b+ac^2+bc^2+a^2c+abc+b^2c+abc=0\)

\(\Leftrightarrow\left(a+b\right)ab+c^2\left(a+b\right)+bc\left(a+b\right)+ac\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(c^2+ab+bc+ac\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

Vậy ta có các trường hợp: \(a=-b,c=0\)hoặc \(b=-c,a=0\)hoăc \(a=-c,b=0\).

Với từng trường hợp ta đều có đpcm. 

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
TC
30 tháng 8 2021 lúc 22:26

undefined

Bình luận (0)
NG
Xem chi tiết
BB
Xem chi tiết
TH
9 tháng 3 2021 lúc 22:19

Ta thấy \(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\ge\dfrac{x^2}{a^2+b^2+c^2}+\dfrac{y^2}{a^2+b^2+c^2}+\dfrac{z^2}{a^2+b^2+c^2}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}\).

Mà đẳng thức xảy ra nên ta phải có x = y = z = 0 (Do \(a^2,b^2,c^2>0\)).

Thay vào đẳng thức cần cm ta có đpcm.

Bình luận (0)
UI
Xem chi tiết
BM
8 tháng 12 2020 lúc 0:00

I don't know 😥😭😭

Bình luận (0)
 Khách vãng lai đã xóa
TT
Xem chi tiết
XO
29 tháng 12 2020 lúc 13:33

Ta có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)

=> \(\left(\frac{a}{c}\right)^{2021}=\left(\frac{b}{d}\right)^{2021}=\left(\frac{a-b}{c-d}\right)^{2021}\)

=> \(\frac{a^{2021}}{c^{2021}}=\frac{b^{2021}}{d^{2021}}=\left(\frac{a-b}{c-d}\right)^{2021}=\frac{a^{2021}+b^{2021}}{c^{2021}+d^{2021}}\)

=>\(\left(\frac{a-b}{c-d}\right)^{2021}=\frac{a^{2021}+b^{2021}}{c^{2021}+d^{2021}}\)(đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
HN
Xem chi tiết
HN
24 tháng 12 2021 lúc 14:31

Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\frac{ab+bc+ca}{abc}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\left(ab+bc+ca\right)\left(a+b+c\right)=abc\)

\(\Leftrightarrow a^2b+ab^2+c^2a+ca^2+b^2c+bc^2+2abc=0\)

\(\Leftrightarrow\left(a^2+2ab+b^2\right)c+ab\left(a+b\right)+c^2\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca+c^2\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

=> Hoặc a+b=0 hoặc b+c=0 hoặc c+a=0

=> Hoặc a=-b hoặc b=-c hoặc c=-a

Ko mất tổng quát, g/s a=-b

a) Ta có: vì a=-b thay vào ta được:

\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=-\frac{1}{b^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{c^3}\)

\(\frac{1}{a^3+b^3+c^3}=\frac{1}{-b^3+b^3+c^3}=\frac{1}{c^3}\)

=> đpcm

b) Ta có: \(a+b+c=1\Leftrightarrow-b+b+c=1\Rightarrow c=1\)

=> \(P=-\frac{1}{b^{2021}}+\frac{1}{b^{2021}}+\frac{1}{c^{2021}}=\frac{1}{1^{2021}}=1\)

Bình luận (0)