Những câu hỏi liên quan
NA
Xem chi tiết
NT
11 tháng 7 2023 lúc 22:28

a: Khi m=-5 thì pt sẽ là x^2-5x-6=0

=>x=6 hoặc x=-1

b:

Δ=(-5)^2-4(m-1)=25-4m+4=-4m+29

Để pt có hai nghiệm thì -4m+29>=0

=>m<=29/4

x1-x2=3

=>(x1-x2)^2=9

=>(x1+x2)^2-4x1x2=9

=>5^2-4(m-1)=9

=>4(m-1)=25-9=16

=>m-1=4

=>m=5(nhận)

c: 2x1-3x2=5 và x1+x2=5

=>x1=4 và x2=1

x1*x2=m-1

=>m-1=4

=>m=5(nhận)

Bình luận (0)
PB
Xem chi tiết
CT
18 tháng 9 2018 lúc 2:22

Bình luận (0)
PB
Xem chi tiết
CT
24 tháng 5 2018 lúc 14:01

Chọn C.

Phương pháp: Biến đổi đưa về phương trình tích.

Cách giải:

Vậy để phương trình đã cho có 4 nghiệm phân biệt thì (*) phải có 2 nghiệm phân biệt khác 2 và 3.

Bình luận (0)
PB
Xem chi tiết
CT
17 tháng 9 2019 lúc 8:51

Bình luận (0)
PB
Xem chi tiết
CT
8 tháng 7 2017 lúc 16:57

Chọn đáp án C

Bình luận (0)
TM
Xem chi tiết
H24
9 tháng 5 2022 lúc 12:09
Bình luận (1)
NN
Xem chi tiết
NT
14 tháng 6 2023 lúc 20:06

Δ=5^2-4(m-3)

=25-4m+12=-4m+27

Để phương trình có 2 nghiệm thì -4m+27>=0

=>m<=27/4

Theo đề, ta có: x1-2<0 và x2-2>0

=>(x1-2)(x2-2)<0

=>x1x2-2(x1+x2)+4<0

=>m-3-2*(-5)+4<0

=>m+1+10<0

=>m<-11

Bình luận (0)
PB
Xem chi tiết
CT
15 tháng 5 2018 lúc 12:51

Đáp án B

Bình luận (0)
H24
Xem chi tiết
NL
28 tháng 3 2021 lúc 21:41

\(\Delta=25-4m\ge0\Rightarrow m\le\dfrac{25}{4}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=m\end{matrix}\right.\)

\(\left|x_1-x_2\right|=3\Leftrightarrow\left(x_1-x_2\right)^2=9\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=9\)

\(\Leftrightarrow25-4m=9\Rightarrow m=4\) (thỏa mãn)

Bình luận (1)
PD
29 tháng 3 2021 lúc 21:36

Pt có 2 nghiệm

\(\to \Delta=(-5)^2-4.1.m=25-4m\ge 0\\\leftrightarrow 4m\le 25\\\leftrightarrow m\le\dfrac{25}{4}\)

Theo Viét

\(\begin{cases}x_1+x_2=5\\x_1x_2=m\end{cases}\)

\(|x_1-x_2|=3\\\leftrightarrow \sqrt{(x_1-x_2)^2}=3\\\leftrightarrow \sqrt{x_1^2+x_2^2-2x_1x_2}=3\\\leftrightarrow \sqrt{(x_1+x_2)^2-4x_1x_2}=3\\\leftrightarrow \sqrt{5^2-4m}=3\\\leftrightarrow 25-4m=9\\\leftrightarrow 4m=16\\\leftrightarrow m=4(TM)\)

Vậy \(m=4\) thỏa mãn hệ thức

Bình luận (0)