Chứng minh rằng nếu a, b, c và căn a+căn b+căn c là các số hữu tỉ thì căn a, căn b, căn c cũng là các số hữu tỉ
GỈA HỘ VỚI CÁC BẠN!
Chứng minh Căn (1-1/xy) là số hữu tỉ biết x và y đều là số hữu tỉ và x^3+y^3=2x^2*y^2
chứng minh rằng A, B, C và căn bậc hai của nó là số hữu tỉ
chứng minh căn bậc hai của 1+1/a^2+1/(a+1)^2 là số hữu tỉ
chứng minh rằng nếu a, b, c và căn a + căn b + căn c là các số hữu tỉ
Cho các số nguyên x,y,z khác không, thỏa mãn x+y+z=0.
Chứng minh rằng căn (1/ x^2 + 1/y^2 + 1/z^2) là số hữu tỉ
Ta có:
\(\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}}=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+0}=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+\dfrac{2\left(x+y+z\right)}{xyz}}\)
\(=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+\dfrac{2}{xy}+\dfrac{2}{yz}+\dfrac{2}{zx}}=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}\)
\(=\left|\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right|\) là số hữu tỉ
cho a, b, c khác 0 và (1/a)+(1/b) =(1/c).
chứng minh: A = căn(a^2 + b^2 + c^2 ) là số hữu tỉ
chứng minh căn 2 là số vô tỉ
chứng minh 5 trừ căn 2 là số vô tỉ
Cho x,y,z là các số hữu tỉ và 1/x+1/y=1/z. Chứng minh rằng căn(x^2+y^2+z^2) là số hữu tỉ
Giúp mk với ạ!!!
Lời giải:
Từ điều kiện đề bài suy ra $zx+zy=xy$
Khi đó:
$x^2+y^2+z^2=(x+y)^2-2xy+z^2=(x+y)^2+z^2-2(zx+zy)=(x+y)^2+z^2-2z(x+y)=(x+y-z)^2$
$\Rightarrow \sqrt{x^2+y^2+z^2}=|x+y-z|$
Vì $x,y,z$ là các số hữu tỉ nên $\sqrt{x^2+y^2+z^2}=|x+y-z|$ là số hữu tỉ (đpcm)
P/s: Bạn chú ý lần sau gõ đề bằng công thức toán.