Tìm x, y nguyên dương sao cho 1/2x + 1/2x + 1/xy = 1/2
tìm các số x,y nguyên dương thỏa mãn: 1/2x + 1/2y + 1/xy = 1/2
Tìm các số nguyên x,y thỏa mãn:6xy+4x-9y-7=0
Tìm giá trị nhỏ nhất của A=x^3+y^3+xy với x,y dương thỏa mãn x+y=1
Tìm các số nguyên x,y thỏa mãn 2x^2+1/x^2+y^2/4=4 sao cho xy đạt giá trị lớn nhất
HELP !
a) \(6xy+4x-9y-7=0\)
\(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)
\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)
\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)
Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)
Tự làm típ
\(A=x^3+y^3+xy\)
\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))
\(A=x^2+y^2\)
Áp dụng bất đẳng thức Bunhiakovxky ta có :
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Hay \(x^3+y^3+xy\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
Bài 1: Tìm các số nguyên x,y thỏa mãn xy+2x-3y=1
Bài 2: Tìm các số nguyên dương x,y,z thỏa mãn (x+1)(y+z)=xyz+2
Bài 1: Tìm các số nguyên x,y thỏa mãn xy+2x-3y=1
Bài 2: Tìm các số nguyên dương x,y,z thỏa mãn (x+1)(y+z)=xyz+2
tìm các số nguyên dương x,y thỏa mãn:
1/2x+1/2y+1/xy=1/2
Ta có \(\frac{1}{2x}+\frac{1}{2y}+\frac{1}{xy}=\frac{1}{2}\)
Mà x và y là số nguyên dương
\(\Rightarrow\frac{y}{2xy}+\frac{x}{2xy}+\frac{2}{2xy}=\frac{1}{2}\)
\(\Rightarrow\frac{y+x+2}{2xy}=\frac{1}{2}\)
\(\Rightarrow2.\left(x+y+2\right)=2xy\)
\(\Rightarrow2xy=2x+2y+4\)
\(\Rightarrow2xy-2x-2y=4\)
\(\Rightarrow2x.\left(y-1\right)-2.\left(y-1\right)=4+2\)
\(\Rightarrow\left(2x-2\right).\left(y-1\right)=6\)
Vì x và y là số nguyên dương
\(\Rightarrow x\ge1\)và \(y\ge1\)
\(\Rightarrow2x-2\ge0\)và \(y-1\ge0\)
Vì x là số nguyên dương => 2x chẵn do đó 2x - 2 chẵn (vì 2 chẵn)
Phân tích 6 thành tích 2 số tự nhiên: \(6=2.3=6.1\)
+) Nếu \(\left(2x-2\right).\left(y-1\right)=2.3\)
\(\Rightarrow\hept{\begin{cases}2x-2=2\\y-1=3\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}2x=4\\y=4\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=2\\y=4\end{cases}}\)
Thử lại:
Với \(x=2\), \(y=4\)ta có: \(\frac{1}{2.2}+\frac{1}{2.4}+\frac{1}{2.4}=\frac{1}{4}+\frac{1}{8}+\frac{1}{8}=\frac{1}{2}\)(chọn)
+) Nếu \(\left(2x-2\right).\left(y-1\right)=6.1\)
\(\Rightarrow\hept{\begin{cases}2x-2=6\\y-1=1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}2x=8\\y=2\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=4\\y=2\end{cases}}\)
Thử lại:
Với \(x=4\), \(y=2\)ta có: \(\frac{1}{2.4}+\frac{1}{2.2}+\frac{1}{4.2}=\frac{1}{8}+\frac{1}{4}+\frac{1}{8}=\frac{1}{2}\)(chọn)
Vậy \(x=2\), \(y=4\);
\(x=4\), \(y=2\).
BẠN THAM KHẢO QUA NHÉ! CHÚC BẠN HỌC TỐT!!!
tìm các cặp số nguyên dương (x,y) thỏa mãn : 2x^2-xy-x-2y+1=0
\(\Leftrightarrow2x^2-x+1=xy+2y\)
\(\Leftrightarrow2x^2-x+1=y\left(x+2\right)\)
\(\Leftrightarrow y=\dfrac{2x^2-x+1}{x+2}=2x-5+\dfrac{11}{x+2}\)
Do y nguyên \(\Rightarrow\dfrac{11}{x+2}\) nguyên \(\Rightarrow x+2=Ư\left(11\right)\)
Mà x nguyên dương \(\Rightarrow x+2\ge3\Rightarrow x+2=11\Rightarrow x=9\)
\(\Rightarrow y=14\)
Vậy \(\left(x;y\right)=\left(9;14\right)\)
Bài 1: Tìm x € Z a)1−3x chia hết cho x−2 b)3x+2 chia hết cho 2x+1 Bài 2: Tìm các số nguyên a)x(3−y)−y=0 b)xy+2x+2y=0 c)xy−2x+4y=1 d)x(y+1)+y=0
Bài 1:a) Ta có: \(1-3x⋮x-2\)
\(\Leftrightarrow-3x+1⋮x-2\)
\(\Leftrightarrow-3x+6-5⋮x-2\)
mà \(-3x+6⋮x-2\)
nên \(-5⋮x-2\)
\(\Leftrightarrow x-2\inƯ\left(-5\right)\)
\(\Leftrightarrow x-2\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{3;1;7;-3\right\}\)
Vậy: \(x\in\left\{3;1;7;-3\right\}\)
b) Ta có: \(3x+2⋮2x+1\)
\(\Leftrightarrow2\left(3x+2\right)⋮2x+1\)
\(\Leftrightarrow6x+4⋮2x+1\)
\(\Leftrightarrow6x+3+1⋮2x+1\)
mà \(6x+3⋮2x+1\)
nên \(1⋮2x+1\)
\(\Leftrightarrow2x+1\inƯ\left(1\right)\)
\(\Leftrightarrow2x+1\in\left\{1;-1\right\}\)
\(\Leftrightarrow2x\in\left\{0;-2\right\}\)
hay \(x\in\left\{0;-1\right\}\)
Vậy: \(x\in\left\{0;-1\right\}\)
Bài 1 :
a, Có : \(1-3x⋮x-2\)
\(\Rightarrow-3x+6-5⋮x-2\)
\(\Rightarrow-3\left(x-2\right)-5⋮x-2\)
- Thấy -3 ( x - 2 ) chia hết cho x - 2
\(\Rightarrow-5⋮x-2\)
- Để thỏa mãn yc đề bài thì : \(x-2\inƯ_{\left(-5\right)}\)
\(\Leftrightarrow x-2\in\left\{1;-1;5;-5\right\}\)
\(\Leftrightarrow x\in\left\{3;1;7;-3\right\}\)
Vậy ...
b, Có : \(3x+2⋮2x+1\)
\(\Leftrightarrow3x+1,5+0,5⋮2x+1\)
\(\Leftrightarrow1,5\left(2x+1\right)+0,5⋮2x+1\)
- Thấy 1,5 ( 2x +1 ) chia hết cho 2x+1
\(\Rightarrow1⋮2x+1\)
- Để thỏa mãn yc đề bài thì : \(2x+1\inƯ_{\left(1\right)}\)
\(\Leftrightarrow2x+1\in\left\{1;-1\right\}\)
\(\Leftrightarrow x\in\left\{0;-1\right\}\)
Vậy ...
tìm các số nguyên x,y sao cho
a) ( x+3) ( y+1 ) = 3
b) ( x-1 ) ( xy+1)=2
c) xy - 2x=5
tìm các số nguyên x và y sao cho:
a) (x+3).(y+1)=3
b) (x-1).(xy+1)=2
c) xy- 2x =5
kb nick tok đi
id;minyoonibts