Những câu hỏi liên quan
TM
Xem chi tiết
H24
13 tháng 12 2020 lúc 18:24

11 c)

\(a^2+2\ge2\sqrt{a^2+1}\Leftrightarrow a^2+1-2\sqrt{a^2+1}+1\ge0\Leftrightarrow\left(\sqrt{a^2+1}-1\right)^2\ge0\) (luôn đúng)

Bình luận (0)
H24
13 tháng 12 2020 lúc 18:38

12 a)  Có a+b+c=1\(\Rightarrow\) (1-a)(1-b)(1-c)= (b+c)(a+c)(a+b) (*)

áp dụng BĐT cô-si: \(\left(b+c\right)\left(a+c\right)\left(a+b\right)\ge2\sqrt{bc}2\sqrt{ac}2\sqrt{ab}=8\sqrt{\left(abc\right)2}=8abc\) ( luôn đúng với mọi a,b,c ko âm ) 

b)  áp dụng BĐT cô-si: \(c\left(a+b\right)\le\dfrac{\left(a+b+c\right)^2}{4}=\dfrac{1}{4}\)

Tương tự: \(a\left(b+c\right)\le\dfrac{1}{4};b\left(c+a\right)\le\dfrac{1}{4}\)

\(\Rightarrow abc\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\dfrac{1}{4}\dfrac{1}{4}\dfrac{1}{4}=\dfrac{1}{64}\)

Bình luận (0)
H24
13 tháng 12 2020 lúc 18:50

13 b) \(\left(a+b\right)\left(ab+1\right)\ge2\sqrt{ab}.2\sqrt{ab}=4ab\)

Dấu = xảy ra khi a=b=1

Bình luận (0)
HN
Xem chi tiết
HN
22 tháng 10 2021 lúc 20:09

undefined

Bình luận (0)
DL
1 tháng 11 2021 lúc 8:54

b  đúng ko ạ

Bình luận (0)
 Khách vãng lai đã xóa
ND
Xem chi tiết
PK
Xem chi tiết
NT
11 tháng 5 2022 lúc 18:13

Bài 1: 

Vì (d)//y=-2x+1 nên a=-2

Vậy: y=-2x+b

Thay x=1 và y=2 vào (d),ta được:

b-2=2

hay b=4

Bình luận (0)
NN
Xem chi tiết
TH
12 tháng 4 2021 lúc 21:43

4: Đặt \(x=\dfrac{a+b}{a-b};y=\dfrac{b+c}{b-c};z=\dfrac{c+a}{c-a}\).

Ta có \(\left(x+1\right)\left(y+1\right)\left(z+1\right)=\dfrac{2a.2b.2c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\left(x-1\right)\left(y-1\right)\left(z-1\right)\)

\(\Rightarrow xy+yz+zx=-1\).

Bất đẳng thức đã cho tương đương:

\(x^2+y^2+z^2\ge2\Leftrightarrow\left(x+y+z\right)^2-2\left(xy+yz+zx\right)-2\ge0\Leftrightarrow\left(x+y+z\right)^2\ge0\) (luôn đúng).

Vậy ta có đpcm

Bình luận (1)
LD
12 tháng 4 2021 lúc 21:48

mình xí câu 45,47,51 :>

45. a) Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\dfrac{1}{a}+\dfrac{2}{b}=\dfrac{1}{a}+\dfrac{4}{2b}\ge\dfrac{\left(1+2\right)^2}{a+2b}=\dfrac{9}{a+2b}\left(đpcm\right)\)

Đẳng thức xảy ra <=> a=b

b) Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}\ge\dfrac{\left(1+1+1\right)^2}{a+b+b}=\dfrac{9}{a+2b}\)(1)

\(\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{b+c+c}=\dfrac{9}{b+2c}\)(2)

\(\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{1}{a}\ge\dfrac{\left(1+1+1\right)^2}{c+a+a}=\dfrac{9}{c+2a}\)(3)

Cộng (1),(2),(3) theo vế ta có đpcm

Đẳng thức xảy ra <=> a=b=c

Bình luận (0)
LD
12 tháng 4 2021 lúc 21:50

47. Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\dfrac{\left(a+b\right)^2}{c}+\dfrac{\left(b+c\right)^2}{a}+\dfrac{\left(c+a\right)^2}{b}\ge\dfrac{\left(a+b+b+c+c+a\right)^2}{a+b+c}=\dfrac{\left[2\left(a+b+c\right)\right]^2}{a+b+c}=\dfrac{4\left(a+b+c\right)^2}{a+b+c}=4\left(a+b+c\right)\)(đpcm)

Đẳng thức xảy ra <=> a=b=c

Bình luận (0)
NN
Xem chi tiết
BA
26 tháng 4 2020 lúc 16:00

người đó đến lúc : 11 giờ nha

    

Bình luận (0)
 Khách vãng lai đã xóa
NT
26 tháng 4 2020 lúc 16:09

đến b lúc:

7h45p+2h50p-25=10h10p

SAI THÌ MK SR NHA^^

Bình luận (0)
 Khách vãng lai đã xóa
BA
26 tháng 4 2020 lúc 16:15

chị Tâm phải cộng cả thời gian dừng nữa

Bình luận (0)
 Khách vãng lai đã xóa
ND
Xem chi tiết
BL
12 tháng 11 2021 lúc 19:50

NDXSDSDXSXSXundefined

Bình luận (0)
 Khách vãng lai đã xóa
US
12 tháng 11 2021 lúc 19:50

Bài 2 :

a) 12,37 + 21,46 + 58,54 + 45,63

= ( 12,37 + 45,63 ) + ( 21,46 + 58,54 )

= 58 + 80

= 138

b) 20,08 + 40,41 + 30,2 + 50,59

= ( 20,08 + 30,2 ) + ( 40,41 + 50,59 )

= 50,2 + 100

= 150,2

Bình luận (0)
 Khách vãng lai đã xóa
PQ
12 tháng 11 2021 lúc 19:51

= ( 12,37 + 45,63 ) + ( 21,46 + 58,54 )

=58 + 80

= 138

= ( 20,08 + 30,02 ) + ( 40,41 + 50,59 ) 

= 50,1 + 91

= 141,1

xin tiick

Bình luận (0)
 Khách vãng lai đã xóa
MV
Xem chi tiết
DL
6 tháng 3 2022 lúc 19:41

1. Định nghĩa hai tam giác bằng nhau

Các trường hợp bằng nhau của tam giác vuông hay, chi tiết

Hai tam giác bằng nhau là hai tam giác có các cạnh tương ứng bằng nhau, các góc tương ứng bằng nhau.

Để kí hiệu sự bằng nhau của tam giác ABC và tam giác A’B’C’ ta viết :

Các trường hợp bằng nhau của tam giác vuông hay, chi tiết

2. Các trường hợp bằng nhau của tam giác vuông

• Hai cạnh góc vuông

Các trường hợp bằng nhau của tam giác vuông hay, chi tiết

Nếu hai cạnh góc vuông của tam giác vuông này lần lượt bằng hai cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó bằng nhau (cạnh – góc – cạnh )

• Cạnh góc vuông và góc nhọn kề cạnh đó

Các trường hợp bằng nhau của tam giác vuông hay, chi tiết

Nếu một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vuông này bằng một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vuông kia thì hai tam giác vuông đó bằng nhau ( góc – cạnh – góc )

• Cạnh huyền – góc nhọn

Các trường hợp bằng nhau của tam giác vuông hay, chi tiết

Nếu cạnh huyền và một góc nhọn của tam giác vuông này bằng cạnh huyền và một góc nhọn của tam giác vuông kia thì hai tam giác vuông đó bằng nhau ( góc – cạnh – góc)

• Cạnh huyền – cạnh góc vuông

Các trường hợp bằng nhau của tam giác vuông hay, chi tiết

Nếu cạnh huyền và một cạnh góc vuông của tam giác vuông này bằng cạnh huyền và một cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.

1. Định nghĩa hai tam giác bằng nhau

Các trường hợp bằng nhau của hai tam giác hay, chi tiết

Hai tam giác bằng nhau là hai tam giác có các cạnh tương ứng bằng nhau, các góc tương ứng bằng nhau.

Để kí hiệu sự bằng nhau của tam giác ABC và tam giác A’B’C’ ta viết : Các trường hợp bằng nhau của hai tam giác hay, chi tiết

2. Các trường hợp bằng nhau của tam giác

a. Trường hợp bằng nhau thứ nhất của tam giác cạnh – cạnh – cạnh (c.c.c)

Các trường hợp bằng nhau của hai tam giác hay, chi tiết

Nếu ba cạnh của tam giác này bằng ba cạnh của tam giác kia thì hai tam giác đó bằng nhau.

Xét Các trường hợp bằng nhau của hai tam giác hay, chi tiết có:

AB = A’B’

AC = A’C’

BC = B’C’

thì Các trường hợp bằng nhau của hai tam giác hay, chi tiết

b. Trường hợp bằng nhau thứ hai của tam giác: cạnh – góc – cạnh (c.g.c) 

b. Trường hợp bằng nhau thứ hai của tam giác: cạnh – góc – cạnh (c.g.c)

Các trường hợp bằng nhau của hai tam giác hay, chi tiết

Nếu hai cạnh và góc xen giữa của tam giác này bằng hai cạnh và góc xen giữa của tam giác kia thì hai tam giác đó bằng nhau

Các trường hợp bằng nhau của hai tam giác hay, chi tiết

c. Trường hợp bằng nhau thứ ba của hai tam giác: góc – cạnh – góc

Các trường hợp bằng nhau của hai tam giác hay, chi tiết

Nếu một cạnh và hai góc kề của tam giác này bằng một cạnh và hai góc kề của tam giác kia thì hai tam giác đó bằng nhau.

Các trường hợp bằng nhau của hai tam giác hay, chi tiết

tik cho mình nha mình đc câu1 nè

Bình luận (0)
DH
Xem chi tiết
NN
25 tháng 1 2022 lúc 19:11

Gọi 4 số liên tiếp lần lượt là a,b,c,d, ta có:

\(a,b,c,d\hept{\begin{cases}a=b-1\\a=c-2\\a=d-3\end{cases}}\Rightarrow a=\left(b+c+d\right)-6\)

\(\Rightarrow a=\frac{\left(406-6\right)}{4}=100\)

\(\Rightarrow\hept{\begin{cases}b=100+1=101\\c=100+2=102\\d=100+3=103\end{cases}}\)

Vậy 4 số liên tiếp đó lần lượt là: 100, 101, 102, 103

Bình luận (0)
 Khách vãng lai đã xóa