Những câu hỏi liên quan
NT
Xem chi tiết
H24
Xem chi tiết
NT
1 tháng 3 2016 lúc 18:30

A=x2+y2+xy-5x-4y+2002

2A=x2+2xy+y2+x2-10x+25+y2-8y+16+1961

2A=\(\left(x+y\right)^2+\left(x-5\right)^2+\left(y-4\right)^2+1961\ge1961\)

Bình luận (0)
H24
Xem chi tiết
TL
28 tháng 4 2015 lúc 22:42

2.M = 2x2 – 10x + 2y2 + 2xy – 8y + 4038 = (x2 – 10x + 25) +( y2 + 2xy + y2) + ( y2 – 8y + 16)  + 3997

= (x-5)2 + (x+y)2 + (y - 4)2 + 3997 = N + 3997

Áp dụng bất đẳng thức Bu- nhi a: (ax+ by + cz)2 \(\le\) (a2+ b2 + c2). (x2 + y2 + z2). Dấu bằng xảy ra khi a/x = b/y = c/z

Ta có: [(5 - x).1 + (x+ y).1 + (y + 4).1]2 \(\le\) [(5 - x)2 + (x+y)2 + (y - 4)2 ].(1+ 1+1) = N .3 = 3.N

<=> 92 = 81 \(\le\) 3.N => N \(\ge\) 27 => 2.M \(\ge\) 27 + 3997 = 4024 

=> M \(\ge\)2012

vậy Min M  = 2012

khi 5 - x = x+ y = y + 4 => x = 4 ; y = -3

 

Bình luận (0)
PN
Xem chi tiết
PN
25 tháng 7 2018 lúc 20:39

Ai giúp mik vs

Bình luận (0)
PN
25 tháng 7 2018 lúc 20:49

Huhu ai giúp vs

Bình luận (0)
MT
Xem chi tiết
TN
5 tháng 3 2016 lúc 18:48

=>2A=2x^2+2y^2-10x-8y+4004

=>2A=x^2+2xy+y^2+x^2-10+25+y^2-8y+16+3963

=(x+y)^2+(x-5)^2+(x-4)^2+3963\(\ge\)3963

=>A\(\ge\)\(\frac{3963}{2}\)

Bình luận (0)
TN
5 tháng 3 2016 lúc 18:50

hế hế sai đấy nhé

Bình luận (0)
TN
5 tháng 3 2016 lúc 18:53

2A=2x^2+2y^2+2xy-10x-8y+4004

=>x^2+y^2+9+2xy-6x-6y+x^2-4x+4+y^2-2y+1+3990

=(x+y-3)^2+(x-2)^2+(y-10^2+3990\(\ge\)3990=>a\(\ge\)1995

dấu = xảy ra <=>x=2;y=1

Bình luận (0)
H24
Xem chi tiết
H24
16 tháng 12 2020 lúc 21:39

Ta có:

\(A=x^2+y^2+xy-2x-4y+2016\\ =\left(x+\dfrac{y}{2}-1\right)^2+\dfrac{3}{2}\left(y-1\right)^2+\dfrac{4027}{2}\\ \ge\dfrac{4027}{2}\)

Dấu bằng xảy ra khi và chỉ khi: 

\(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=1\end{matrix}\right.\)

Bình luận (0)
NL
Xem chi tiết
TL
4 tháng 7 2021 lúc 21:54

`A=x^2+6x+y^2+4y+15`

`=(x^2+6x+9)+(y^2+4y+4)+2`

`=(x+3)^2+(y+2)^2+2`

Vì `(x+3)^2+(y+2)^2 >=0 forall x,y`

`=>A_(min)=2 <=> x=-3; y=-2`.

Bình luận (0)
NT
4 tháng 7 2021 lúc 22:14

Ta có: \(A=x^2+6x+y^2+4y+15\)

\(=x^2+6x+9+y^2+4y+4+2\)

\(=\left(x+3\right)^2+\left(y+2\right)^2+2\ge2\forall x,y\)

Dấu '=' xảy ra khi (x,y)=(-3;-2)

Bình luận (0)
FT
Xem chi tiết
LK
Xem chi tiết
DT
10 tháng 3 2016 lúc 11:52

A = x2 + y2 + xy - 5x - 4y + 2002 
= x2 + x(y - 5) + y2 - 4y + 2002 
= x2 + 2.x.(y - 5)/2 + (y - 5)2/4 - (y - 5)2/4 + y2 - 4y + 2002 
= [x + (y - 5)/2]2 + 3/4*y2 - 3y/2 + 7983/4 
>= 3/4*y2 - 3y/2 + 7983/4 (hàm bậc 2,min tại y = 1) 
= 3/4 - 3/2 + 7983/4 = 1995 
vậy minA = 1995,dấu = xảy ra khi x + y - 5 = 0 và y = 1 
<> x = 4 và y = 1

Bình luận (0)
MB
10 tháng 3 2016 lúc 15:29

x2+(y−5)x+y2−4y+2002−A=0

Δ=(y−5)^2−4(y^2−4y+2002−A)
=y^2−10y+25−4y^2+16y−8008+4A
=−3(y−1)^2−7980+4A≥0

→4A−7980≥0

→A≥1995

Dấu bằng khi y=1;x=2

Bình luận (0)