. Cho hình vẽ. Chứng minh:
a) ∆ABC = ∆CDA; b) AB // CD.
Vẽ hình sau: Cho 2 đoạn thẳng AC và BD giao nhau tại trung điểm O của mỗi đoạn. Chứng minh:
a) AD = CD; AD // BC.
b) góc CDA = góc ABC.
c) Lấy M trên DC và lấy N trên AB sao cho DM = BN. Chứng minh M; O; N thẳng hàng.
d) Lấy E; F là trung điểm AD; BC. Chứng minh O là trung điểm EF.
a: Xét ΔOAD và ΔOCB có
OA=OC
\(\widehat{AOD}=\widehat{COB}\)
OD=OB
Do đó: ΔOAD=ΔOCB
=>AD=CB và \(\widehat{OAD}=\widehat{OCB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AD//BC
b: Xét ΔOAB và ΔOCD có
OA=OC
\(\widehat{AOB}=\widehat{COD}\)
OB=OD
Do đó: ΔOAB=ΔOCD
=>AB=CD
Xét ΔABC và ΔCDA có
AB=CD
BC=DA
AC chung
Do đó: ΔABC=ΔCDA
=>\(\widehat{ABC}=\widehat{CDA}\)
c: Xét ΔOBN và ΔODM có
OB=OD
\(\widehat{OBN}=\widehat{ODM}\)
BN=DM
Do đó: ΔOBN=ΔODM
=>\(\widehat{BON}=\widehat{DOM}\)
mà \(\widehat{DOM}+\widehat{BOM}=180^0\)
nên \(\widehat{BON}+\widehat{BOM}=180^0\)
=>\(\widehat{MON}=90^0\)
=>M,O,N thẳng hàng
d: Xét ΔOAE và ΔOCF có
OA=OC
\(\widehat{AOE}=\widehat{COF}\)
AE=CF\(\left(AE=\dfrac{AD}{2}=\dfrac{BC}{2}=CF\right)\)
Do đó: ΔOAE=ΔOCF
=>\(\widehat{AOE}=\widehat{COF}\)
mà \(\widehat{AOE}+\widehat{EOC}=180^0\)
nên \(\widehat{COF}+\widehat{COE}=180^0\)
=>\(\widehat{FOE}=180^0\)
=>F,O,E thẳng hàng
mà OE=OF
nên O là trung điểm của EF
Cho hình vẽ AB//CD, AD//BC,AD=BC,AB=DC chứng minh tam giác ABC=tam giác CDA cho góc D=60 độ.tính góc B
Cho △ABC có AB = AC, phân giác AM (M ∈ BC).
Chứng minh:
a) △ABM = △ACM
b) M là trung điểm của BC và AM ⊥ BC
@Có vẽ hình@
a, Vì \(\left\{{}\begin{matrix}\widehat{MAB}=\widehat{MAC}\\AB=AC\\AM.chung\end{matrix}\right.\) nên \(\Delta ABM=\Delta ACM\left(c.g.c\right)\)
b, Vì \(\Delta ABM=\Delta ACM\) nên \(\left\{{}\begin{matrix}\widehat{AMB}=\widehat{AMC}\\BM=MC\end{matrix}\right.\)
Mà \(\widehat{AMB}+\widehat{AMC}=180^0\Rightarrow\widehat{AMB}=\widehat{AMC}=90^0\)
Vậy \(AM\perp BC\) và M là trung điểm BC
Cho △ABC, trên nửa mặt phẳng bờ AC không chứa điểm B, lấy điểm D sao cho AC // BC và AD = BC. Chứng minh:
a) △ABC = △CDA
b) AB // CD và △ABD = △CDB
#Có vẽ hình#
b: Xét tứ giác ABCD có
AD//BC
AD=BC
Do đó: ABCD là hình bình hành
Suy ra: BA//CD
Cho tam giác ABC nhọn (AB<AC). Vẽ về phía ngoài tam giác ABC các tam giác vuông cân tại A là ABD, ACE và hình bình hành ADKE. Chứng minh:
a. KA=BC
b. KA vuông góc BC
Cho ABC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh:
a) Vẽ hình, Viết GT-KL
b) D ABM = D ECM
c) AB // CE
c: Xét tứ giác ABEC có
M là trung điểm của BC
M là trung điểm của AE
Do đó: ABEC là hình bình hành
Suy ra: AB//EC
. Cho D ABC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh:
a) Vẽ hình, Viết GT-KL
b) D ABM =D ECM
c) AB // CE
c: Xét tứ giác ABEC có
M là trung điểm của BC
M là trung điểm của AE
Do đó: ABEC là hình bình hành
Suy ra: AB//CE
cho tam giác ABC(AB<AC), tia phân giác AD. qua D vẽ tia Dx sao cho góc CDx= góc A (Dx và A cùng phía đối với BC). tia Dx cắt Ac ở E. chứng minh:
a) tam giác ABC đồng dạng tam giác DEC
b)DE=DB
(vẽ hình giúp mình với ạ)
a) Xét ΔABC và ΔDEC có
\(\widehat{BAC}=\widehat{EDC}\)(gt)
\(\widehat{ACB}\) chung
Do đó: ΔABC∼ΔDEC(g-g)
Vẽ hình ra giúp mình nữa nhá !!
Cho tam giác ABC có AB<AC; phân giác AD. Qua D vẽ tia Dx sao cho góc CDx = A; Dx và A cùng phía với BC. Tia Dx cắt AC ở E. Chứng minh:
a) Tam giác ABC đồng dạng tam giác DEC
b) DE=DB
Góc A nào bạn? Ở trong hình vẽ có 3 góc A lận bạn!
a) Xét ΔABC và ΔDEC có
\(\widehat{BAC}=\widehat{EDC}\)(gt)
\(\widehat{C}\) chung
Do đó: ΔABC\(\sim\)ΔDEC(g-g)