Những câu hỏi liên quan
LL
Xem chi tiết
TG
21 tháng 4 2021 lúc 16:24

\(a^2+b^2+c^2-ab-bc-ac=0\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\) (1)

Mà: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\) 

Nên PT (1) \(\Leftrightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(a-c\right)^2=0\end{matrix}\right.\)

=> a = b = c

\(P=\left(a-b\right)^{2020}+\left(b-c\right)^{2021}+\left(c-a\right)^{2022}\)

\(=\left(a-a\right)^{2020}+\left(b-b\right)^{2021}+\left(c-c\right)^{2022}\)

= 0

 

Bình luận (0)
DN
Xem chi tiết
TC
24 tháng 8 2021 lúc 12:01

undefined

Bình luận (1)
NT
24 tháng 8 2021 lúc 14:31

Ta có: \(3\left(a+b+c\right)^2\ge0\forall a,b,c\)

\(4\left|ab+bc+ca\right|\ge0\forall a,b,c\)

Do đó: \(3\left(a+b+c\right)^2+4\left|ab+bc+ca\right|\ge0\forall a,b,c\)

Dấu '=' xảy ra khi a=b=c=0

Ta có: \(a^{2020}-b^{2021}+c^{2022}\)

\(=0^{2020}-0^{2021}+0^{2022}\)

=0

Bình luận (0)
HL
Xem chi tiết
NT
31 tháng 7 2023 lúc 11:30

a^2+b^2+c^2=ab+bc+ac

=>2a^2+2b^2+2c^2-2ab-2bc-2ac=0

=>a^2-2ab+b^2+b^2-2bc+c^2+a^2-2ac+c^2=0

=>(a-b)^2+(b-c)^2+(a-c)^2=0

=>a=b=c

\(T=\dfrac{a^{2022}+a^{2022}+a^{2022}}{\left(3a\right)^{2022}}=\dfrac{3}{3^{2022}}=\dfrac{1}{3^{2021}}\)

Bình luận (0)
DL
Xem chi tiết
TH
12 tháng 3 2022 lúc 21:57

-Mình làm tắt được không bạn :/?

Bình luận (2)
TH
12 tháng 3 2022 lúc 22:07

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2022}\)

\(\Rightarrow\dfrac{bc+ca+ab}{abc}=\dfrac{1}{a+b+c}\)

\(\Rightarrow\left(bc+ca+ab\right)\left(a+b+c\right)=abc\)

\(\Rightarrow ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+3abc=abc\)

\(\Rightarrow ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+2abc=0\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Rightarrow a=-b\) hay \(b=-c\) hay \(c=-a\)

\(\Rightarrow c=2022\) hay \(a=2022\) hay \(b=2022\)

-Nếu \(a=-b\)\(\Rightarrow B=\dfrac{1}{a^{2021}}+\dfrac{1}{b^{2021}}+\dfrac{1}{c^{2021}}=\dfrac{1}{a^{2021}}-\dfrac{1}{a^{2021}}+\dfrac{1}{2022^{2021}}=\dfrac{1}{2022^{2021}}\)

-Tương tự các trường hợp còn lại.

 

Bình luận (0)
H24
Xem chi tiết
NM
11 tháng 11 2021 lúc 9:38

\(a^{2019}+b^{2019}=a^{2020}+b^{2020}\\ \Leftrightarrow a^{2020}-a^{2019}=b^{2019}-b^{2020}=0\\ \Leftrightarrow a^{2019}\left(a-1\right)=b^{2019}\left(1-b\right)\\ \Leftrightarrow\dfrac{a^{2019}}{b^{2019}}=\dfrac{1-b}{a-1}\left(1\right)\\ a^{2020}+b^{2020}=a^{2021}+b^{2021}\\ \Leftrightarrow a^{2021}-a^{2020}=b^{2020}-b^{2021}\\ \Leftrightarrow a^{2020}\left(a-1\right)=b^{2020}\left(1-b\right)\\ \Leftrightarrow\dfrac{a^{2020}}{b^{2020}}=\dfrac{1-b}{a-1}\left(2\right)\\ \left(1\right)\left(2\right)\Leftrightarrow\dfrac{a^{2019}}{b^{2019}}=\dfrac{a^{2020}}{b^{2020}}\Leftrightarrow\dfrac{a}{b}=1\Leftrightarrow a=b\\ \Leftrightarrow2a^{2019}=2a^{2020}\\ \Leftrightarrow a=1=b\\ \Leftrightarrow P=2022-\left(1+1-1\right)^{2022}=2021\)

Bình luận (4)
H24
Xem chi tiết
AH
26 tháng 12 2022 lúc 12:38

Lời giải:
$ab+bc+ac=\frac{(a+b+c)^2-(a^2+b^2+c^2)}{2}=\frac{9^2-27}{2}=27$

$\Rightarrow a^2+b^2+c^2=ab+bc+ac$

$\Leftrightarrow 2(a^2+b^2+c^2)=2(ab+bc+ac)$

$\Leftrightarrow (a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ac+a^2)=0$

$\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0$
Vì $(a-b)^2; (b-c)^2; (c-a)^2\geq 0$ với mọi $a,b,c$ nên để tổng của chúng bằng $0$ thì $(a-b)^2=(b-c)^2=(c-a)^2=0$
$\Rightarrow a=b=c$

Mà $a+b+c=9$ nên $a=b=c=3$. 

Khi đó:

$(a-4)^{2021}+(b-4)^{2022}+(c-4)^{2023}=(-1)^{2021}+(-1)^{2022}+(-1)^{2023}$

$=(-1)+1+(-1)=-1$

Bình luận (0)
AM
Xem chi tiết
H24
15 tháng 6 2023 lúc 19:47

a/Thay a = 1; b = 0 vào biểu thức C, ta có:
\(C=\left(2022\times1+2022\times0\right)-2021\times0\)
\(=\left(2022+0\right)-0\)
\(=2022\)
b/Thay a = 1; b = 0 vào biểu thức D, ta có:
\(D=\left(999\times1-99\times0\right)+201\times\left(1-0\right)\)
\(=\left(999-0\right)+201\times1\)
\(=999+201\)
\(=1200\)
#deathnote

Bình luận (0)
TN
Xem chi tiết
TH
17 tháng 5 2022 lúc 20:31

Bài này xuất hiện trong câu cuối đề GKI năm ngoái của mình :v

-Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\left\{{}\begin{matrix}\dfrac{a}{2020}=\dfrac{c}{2022}=\dfrac{a-c}{2020-2022}=\dfrac{a-c}{-2}\\\dfrac{a}{2020}=\dfrac{b}{2021}=\dfrac{a-b}{2020-2021}=\dfrac{a-b}{-1}\\\dfrac{c}{2022}=\dfrac{b}{2021}=\dfrac{c-b}{2022-2021}=c-b\end{matrix}\right.\)

\(\Rightarrow c-b=-\left(a-b\right)=\dfrac{a-c}{-2}\)

\(\Rightarrow\left\{{}\begin{matrix}a-c=-2\left(c-b\right)\\a-b=-\left(c-b\right)\end{matrix}\right.\)

\(\left(a-c\right)^3+8\left(a-b\right)^2.\left(c-b\right)=\left[-2\left(c-b\right)\right]^3+8\left[-\left(c-b\right)\right]^2.\left(c-b\right)=-8\left(c-b\right)^3+8\left(c-b\right)^3=0\left(đpcm\right)\)

Bình luận (0)
NV
Xem chi tiết