Cho tam giác ABC, có AB = AC. Gọi M là trung điểm của BC
cho tam giác ABC vuông tại A có AB=3cm,BC=5cm. Gọi N là trung điểm BC, trên tia đối N lấy điếm D sao cho ND=NA
a)C/m: tam giác ACN= tam giác DBN
b)Tính BD
c)Gọi M là trung điểm AB. C/m: tam giác MDC cân
d)MD cắt BC tại H, gọi I là trung điểm của AC, DI cắt BC tại K. C/m: tam giác HBD= tam giác KCA
a) Xét ΔACN và ΔDBN có
NA=ND(gt)
\(\widehat{ANC}=\widehat{DNB}\)(hai góc đối đỉnh)
NC=NB(N là trung điểm của BC)
Do đó: ΔACN=ΔDBN(c-g-c)
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=5^2-3^2=16\)
hay AC=4(cm)
Ta có: ΔACN=ΔDBN(cmt)
nên AC=DB(hai cạnh tương ứng)
mà AC=4cm(cmt)
nên BD=4cm
Vậy: BD=4cm
c) Xét ΔCAM vuông tại A và ΔDBM vuông tại B có
AC=BD(cmt)
MA=MB(M là trung điểm của AB)
Do đó: ΔCAM=ΔDBM(hai cạnh góc vuông)
Suy ra: MC=MD(Hai cạnh tương ứng)
Xét ΔMCD có MC=MD(cmt)
nên ΔMCD cân tại M(Định nghĩa tam giác cân)
Cho tam giác ABC có AB=AC Gọi H là trung điểm của BC.\(^{ }\) Tia phân giác của góc ABC cắt AC tại D, trên AB lấy điểm M sao cho BM=BC. Chứng minh góc BMD = góc ABC
Xét ΔBMD và ΔBCD có
BM=BC
góc MBD=góc CBD
BD chung
=>ΔBMD=ΔBCD
=>góc BMD=góc BCD=góc ABC
Cho tam giác ABC có AB = AC, gọi D là trung điểm của BC. Chứng minh: a) Tam giác ADB = ADC; b) AD là tia phân giác của góc BAC; c) AD vuông góc BC
Cho tam giác ABC có AB = AC, gọi D là trung điểm của BC. Chứng minh
a) Tam giác ADB = ADC
b) AD là tia phân giác của góc BAC
c) AD vuông góc BC
Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC. Biết AB = 10cm; AM = 8cm. Tính BC
Xét ΔABM vuông tại M có
\(AB^2=BM^2+AM^2\)
=>BM=6(cm)
=>BC=12(cm)
Vì tam giác ABC cân nên AM là đường trung tuyến đồng thời là đường cao Theo định lí Pytago cho tam giác AMB vuông tại M
BM = \(\sqrt{AB^2-AM^2}=6\)cm
=> BC = 2BM = 12 cm
ta có: AB=AC => tam giác ABC cân tại A
M là trung điểm BC=> M là đường cao của tam giác ABC
xét tam giác AMB có, M vuông
áp dụng định lý pitago ta có:
\(AB^2=AM^2+MB^2\)
\(10^2=8^2+MB^2\)
=> MB= 6 cm
Mà M là trung điểm BC
=> BC=MB.2=6.2=12cm
cho tam giác ABC có AB=AC . Gọi M là trung điểm BC .Chứng minh a, tam giác ABC = tam giác AMC b, AM ⊥ BC
a: Xét ΔAMB và ΔAMC co
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
b: ΔABC cân tại A
mà AM là trung tuyến
nên AM vuông góc CB
Cho tam giác ABC vuông tại A, có AB = 8, NF = 2.5. Gọi M là trung điểm của BC, N là trung điểm của AC. F thuộc M. Tính AC ?
Cho tam giác ABC có AB < AC , các đường phân giác AD, BE lần lượt của góc A, góc B cắt nhau tại I. Gọi G là trọng tâm của tam giác ABC ( M là trung điểm của BC ).Có AB= 12cm, AC= 18cm, BC = 15cm.
Chứng minh IG//BC.
Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
=>BD/2=CD/3=(BD+CD)/(2+3)=15/5=3
=>BD=6cm và CD=9cm
Xét ΔBAD có BI là phân giác
nên AI/ID=AB/BD=2
=>AI/AD=2/3=AG/AM
=>IG//BC
Cho tam giác ABC có AB < AC , các đường phân giác AD, BE lần lượt của góc A, góc B cắt nhau tại I. Gọi G là trọng tâm của tam giác ABC ( M là trung điểm của BC ).Có AB= 12cm, AC= 18cm, BC = 15cm.
Chứng minh IG//BC.
Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
=>BD/2=CD/3=(BD+CD)/(2+3)=15/5=3
=>BD=6cm và CD=9cm
Xét ΔBAD có BI là phân giác
nên AI/ID=AB/BD=2
=>AI/AD=2/3=AG/AM
=>IG//BC
cho tam giác ABC có AB=AC trên cạnh AB lấy điểm M trên cạnh AC lấy điểm N sao cho AM = An. Gọi là trung điểm của BC . a) chưng minh tam giác ABH = tam giác ACH b) Gọi E là giao điểm của AH và NM. chứng minh tam giác AME = tam giác ANE c) chứng minh NM//BC
a: Xét ΔABH và ΔACH có
AB=AC
BH=CH
AH chung
=>ΔABH=ΔACH
b: ΔABC cân tại A có AH là đường trung tuyến
nên AH là phân giác của góc BAC và AH vuông góc BC
Xét ΔAME và ΔANE có
AM=AN
góc MAE=góc NAE
AE chung
=>ΔAME=ΔANE
c: Xét ΔABC có AM/AB=AN/AC
nên MN//BC