CMR:voi a+b >=1 thi a^2+b^2 >=1/2
CMR:Voi 3 so a,b,c duong thi
a) (a+b)(1/a+1/b)>/4
b) (a+b+c)(1/a+1/b+1/c)>/9
c) 2a/bc+b+c/2a>/2
giup mk giai bai nay vs cac ban
DUNG MK SE TICH CHO
CMR:Voi moi so nguyen duong N thi:
\(^{3^{2+n}-2^{2+n}+3^n-2^n}\)chia het cho 10
Ta có:
\(3^{2+n}-2^{2+n}+3^n-2^n\)
\(=3^2.3^n-2^2.2^n+3^n-2^n\)
\(=9.3^n-4.2^n+3^n-2^n\)
\(=3^n\left(9+1\right)-2^n\left(4+1\right)\)
\(=10.3^n-5.2^n\)
\(=10.3^n-5.2.2^{n-1}\)
\(=10.3^n-10.2^{n-1}⋮10\left(đpcm\right)\) (n nguyên dương)
chứng minh rằng nếu a+b=1 thi a^2+b^2=>1/2
CMR neu a+b=1 thi a2+b2>=1/2
(a-b)^2>=0 với mọi a,b
<=> a^2+b^2>= 2ab
<=> (a^2 + b^2)*2 >= a^2 + b^2 + 2ab = (a+b)^2 =1
suy ra đpcm
dấu = xảy ra <=> a=b=1/2
ta có a+b=1
=> (a+b)^2=1
=> a^2+2ab+b^2=1(1)
mặt khác a+b>=\(2\sqrt{ab}=>\left(a+b\right)^2>=4ab\)
=> 1>=4ab
=>ab<=1/4 =>2ab <=1/2
thay vào(1)=> a^+b^2>=1-1/2=1/2
dấu = khi a=b=1/2
CMR:neu \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=R\) va a+b+c=abc thi \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)
Sửa đề: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2c}{abc}+\frac{2a}{abc}+\frac{2b}{abc}=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2\left(a+b+c\right)}{a+b+c}=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2=4\)
hay \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)(đpcm)
CMR neu a+b=1 thi: \(\frac{b}{a^3-1}-\frac{a}{b^3-1}=\frac{2\left(a-b\right)}{a^2b^2+3}\)
cho ba số a,b,c khac 0 va đôi một khác nhau thỏa mản 1/a + 1/b + 1/c=0
Tính A= a^2/a^2+2bc + b^2/b^2+ 2ac + c^2/c^2+2ab
Giusp mik với please . Mai thi rùi
cm rang neu (a,b) = 1 thi (a^2,a+b) =1
Cho 1/a+1/b+1/c=2 và a+b+c=abc. Tính C=1/a^2+1/b^2+1/c^2 gần thi nên bài tệp nhìu vo kẻ, các bn giúp suli với.
Ta có : \(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ac}=2^2=4\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=4-2\cdot\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\right)\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=4-2\cdot\left(\dfrac{a+b+c}{abc}\right)=4-2\cdot\dfrac{abc}{abc}=4-2\cdot1=2\)