Ôn tập cuối năm phần số học

HK

CMR:neu \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=R\) va a+b+c=abc thi \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)

NT
19 tháng 8 2020 lúc 21:54

Sửa đề: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)

Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)

\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2c}{abc}+\frac{2a}{abc}+\frac{2b}{abc}=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2\left(a+b+c\right)}{a+b+c}=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2=4\)

hay \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)(đpcm)

Bình luận (0)

Các câu hỏi tương tự
VH
Xem chi tiết
ND
Xem chi tiết
SN
Xem chi tiết
LD
Xem chi tiết
NL
Xem chi tiết
MT
Xem chi tiết
PN
Xem chi tiết
ML
Xem chi tiết
LK
Xem chi tiết