Cho 2x+64=5y. tìm x;y
Tìm các số x,y,z biết: 3x=5y=7z và 2x-y+z=64
Giúp mik vs, cảm ơn mọi người
tìm x, y biết
a)x/-3 = y/-7 và 2x+4y=64
b)x/3 = y/2 và 3x^2 - 5y^3 = 35
ai nhanh mk tick đúng cho !
\(\frac{x}{-3}=\frac{y}{-7}\)
áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{x}{-3}=\frac{y}{-7}=\frac{2x}{-6}=\frac{4y}{-28}=\frac{2x+4y}{-6+\left(-28\right)}=\frac{64}{-34}=\frac{32}{-17}\)
\(x=\frac{-3.32}{-17}=\frac{96}{17}\)
\(y=\frac{-7.32}{-17}=\frac{224}{17}\)
Tìm x,y,z :
a , 3/2x = 4/5y = 6/7z và x- y -2z= -45
b , x/2 = y/3 = z/4 và x^2 - y^2 + 2z^2=108
c, x^3 /8 = y^3/64 = z^3/216 và x^2 + y ^2 + z^2 = 14
b) Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=4k\end{matrix}\right.\)
Ta có: \(x^2-y^2+2z^2=108\)
\(\Leftrightarrow\left(2k\right)^2-\left(3k\right)^2+2\cdot\left(4k\right)^2=108\)
\(\Leftrightarrow4k^2-9k^2+2\cdot16k^2=108\)
\(\Leftrightarrow k^2=4\)
Trường hợp 1: k=2
\(\Leftrightarrow\left\{{}\begin{matrix}x=2k=2\cdot2=4\\y=3k=3\cdot2=6\\z=4k=4\cdot2=8\end{matrix}\right.\)
Trường hợp 2: k=-2
\(\Leftrightarrow\left\{{}\begin{matrix}x=2k=2\cdot\left(-2\right)=-4\\y=3k=3\cdot\left(-2\right)=-6\\z=4k=4\cdot\left(-2\right)=-8\end{matrix}\right.\)
cho P = 12x^5y-2x^7+x^2y^6,Q = 2x^5y-7x^7+3x^2y^6+1
a) tìm bậc của P,Q
b) tính P+Q,P-Q,Q-P
b)P+Q=(12x^5y - 2x^7 + x^2y^6)+(2x^5y - 7x^7 + 3x^2y^6 + 1)
P+Q=12x^5y - 2x^7 + x^2y^6 + 2x^5y - 7x^7 + 3x^2y^6 + 1
P+Q=(12x^5y + 2x^5y) - (2x^7 + 7x^7) + (x^2y^6 + 3x^2y^6) + 1
P+Q=14x^5y - 9x^7 + 4x^2y^6 + 1
P-Q;Q-P làm tương tự nha bạn
Tìm 2 số tự nhiên x, y sao cho : 2x + 5y = 19
Do vế phải là số lẻ nên vế trái là số lẻ. Vì 2x là số chẵn nên 5y là số lẻ hay y là số lẻ.
Lại có x, y là số tự nhiên nên \(0\le2x;5y\le19\Rightarrow y\le3\)
Với y = 1, ta có x = 7.
Với y = 3, ta có x = 2.
Vậy ta tìm được hai cặp số thỏa mãn.
cho hệ phương trình sau tìm x,y
2x+5y=-(x+y) (1)
6x+3y=y-10 (2)
\(\left\{{}\begin{matrix}2x+5y=-\left(x+y\right)\left(1\right)\\6x+3y=y-10\left(2\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+5y=-x-y\\6x+2y=-10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+6y=0\\6x+2y=-10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+6y=0\\3x+y=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5y=5\\3x+y=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-2y\\y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=1\end{matrix}\right.\)
Giải hệ phương trình:
\(\left\{{}\begin{matrix}4x+4y=64\\-2x+5y=10\end{matrix}\right.\)
\(\left\{{}\begin{matrix}4x+4y=64\\-2x+5y=10\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}4x+4y=64\\4x-10y=-20\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}14y=64-\left(-20\right)\\x=\dfrac{64-4y}{4}\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}y=6\\x=10\end{matrix}\right.\)
Vậy nghiệm của hệ phương trình (x;y) = (10;6)
\(\left\{{}\begin{matrix}4x+4y=64\\-2x+5y=10\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}4x+4y=64\\-4x+10y=20\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}14y=64\\-4x+10y=20\end{matrix}\right.\)
⇔
Tìm x,y, biết
a) 4x = 5y và 4y = 6z x - 2y + 3z = 5
b) 2x = 3z và 4z = 5y
3x +y - 2z = 3
c) 4x = 5y = 6z và x + 2y - z = 5
d) 2x = 5y -3z và 2x- 3y - z = 2
\(a,4x=5y\:\Rightarrow\frac{x}{5}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{12}\)
\(4y=6z\Rightarrow\frac{y}{6}=\frac{z}{4}\Rightarrow\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{x}{15}=\frac{2y}{24}=\frac{3z}{24}\)
\(\Rightarrow\frac{x-2y+3z}{15-24+24}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{5}{15}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{1}{3}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1}{3}\cdot15=5\\y=\frac{1}{3}\cdot12=4\\z=\frac{1}{3}\cdot8=\frac{8}{3}\end{cases}}\)
mọi người giúp mk câu b, c, d còn lại nha
Tìm các cặp số nguyên(x;y), sao cho: 2x-5y+5xy=14
\(2x-5y+5xy=14\)
\(\Leftrightarrow2x-2+5y\left(x-1\right)=12\)
\(\Leftrightarrow\left(x-1\right)\left(5y+2\right)=12\)
mà \(x,y\)nguyên nên \(5y+2\)chia cho \(5\)dư \(2\).
Ta có bảng giá trị:
5y+2 | -3 | 2 | 12 |
x-1 | -4 | 6 | 1 |
y | -1 | 0 | 2 |
x | -3 | 7 | 2 |
Vậy phương trình có các nghiệm là: \(\left(-3,-1\right),\left(7,0\right),\left(2,2\right)\).
Cho :xy - 2x + 5y - 10 =15
Tìm cặp số x ,y