Rút gọn biểu thức: 1+\(sqrt\)x/1-sqrtx +1-sqrtx/1+sqrtx
mọi người gúp mình bài này vs ạ
Rút gọn biểu thức sau: Q=(\(\dfrac{1}{2\sqrt{x}+1}+\dfrac{1}{2\sqrt{x}-1}\)):\(\dfrac{1}{1-4x}\) với x≥0,x≠\(\dfrac{1}{4}\)
giúp tui giải bài này vs tui c.ơn
\(Q=\left(\dfrac{1}{2\sqrt{x}+1}+\dfrac{1}{2\sqrt{x}-1}\right):\dfrac{1}{1-4x}\)
\(=\left(\dfrac{2\sqrt{x}-1}{\left(2\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}+\dfrac{2\sqrt{x}+1}{\left(2\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}\right).\left(1-4x\right)\)
\(=\left(\dfrac{2\sqrt{x}-1+2\sqrt{x}+1}{4x-1}\right)\left(1-4x\right)\)
\(=\dfrac{-4\sqrt{x}.\left(4x-1\right)}{4x-1}=-4\sqrt{x}\)
\(Q=\left(\dfrac{1}{2\sqrt{x}+1}+\dfrac{1}{2\sqrt{x}-1}\right):\dfrac{1}{1-4x}\left(dkxd:x\ge0;x\ne\dfrac{1}{4}\right)\)
\(=\left[\dfrac{2\sqrt{x}-1}{\left(2\sqrt{x}-1\right)\left(2\sqrt{x}+1\right)}+\dfrac{2\sqrt{x}+1}{\left(2\sqrt{x}-1\right)\left(2\sqrt{x}+1\right)}\right]\cdot\left(1-4x\right)\)
\(=\dfrac{2\sqrt{x}-1+2\sqrt{x}+1}{4x-1}\cdot\left[-\left(4x-1\right)\right]\)
\(=4\sqrt{x}\cdot\left(-1\right)\)
\(=-4\sqrt{x}\)
rút gọn biểu thức sau
B=\(\left(\dfrac{2}{\sqrt{x}+2}-\dfrac{\sqrt{x}-5}{x-4}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\)
giải chi tiết hộ mình vs ạ !!!
Ta có: \(B=\left(\dfrac{2}{\sqrt{x}+2}-\dfrac{\sqrt{x}-5}{x-4}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\)
\(=\dfrac{2\sqrt{x}-4-\sqrt{x}+5}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)
\(=\dfrac{1}{\sqrt{x}+2}\)
\(B=\left(\dfrac{2}{\sqrt{x}+2}-\dfrac{\sqrt{x}-5}{x-4}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\left(x\ge0;x\ne4\right)\\ B=\dfrac{2\sqrt{x}-4-\sqrt{x}+5}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\\ B=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\cdot\dfrac{1}{\sqrt{x}+1}=\dfrac{1}{\sqrt{x}+2}\)
Rút gọn biểu thức sau
C=\(\left(\dfrac{15-\sqrt{x}}{x-25}+\dfrac{2}{\sqrt{x}+5}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-5}\)
giải chi tiết hộ mình vs ạ
\(C=\left(\dfrac{15-\sqrt{x}}{x-25}+\dfrac{2}{\sqrt{x}+5}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-5}\left(đk:x\ge0,x\ne25\right)\)
\(=\dfrac{15-\sqrt{x}+2\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}.\dfrac{\sqrt{x}-5}{\sqrt{x}+1}\)
\(=\dfrac{\sqrt{x}+5}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}.\dfrac{\sqrt{x}-5}{\sqrt{x}+1}=\dfrac{1}{\sqrt{x}+1}\)
\(ĐK:x\ge0;x\ne25\)
\(C=\dfrac{15-\sqrt{x}+2\sqrt{x}-10}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\cdot\dfrac{\sqrt{x}-5}{\sqrt{x}+1}\\ C=\dfrac{\sqrt{x}+5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+1\right)}=\dfrac{1}{\sqrt{x}+1}\)
DKXD: \(x\ne5;x>0\)
\(C=\left(\dfrac{15-\sqrt[]{x}}{x-25}+\dfrac{2}{\sqrt[]{x}+5}\right):\dfrac{\sqrt[]{x+1}}{\sqrt[]{x}-5}\)
\(C=\left(\dfrac{15-\sqrt[]{x}}{\left(\sqrt[]{x}—5\right)\left(\sqrt{x}+5\right)}+\dfrac{2\left(\sqrt[]{x}-5\right)}{\left(\sqrt[]{x}-5\right)\left(\sqrt{x+5}\right)}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-5}\)
\(C=\left(\dfrac{15-\sqrt{x}+2\sqrt{x}-10}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\right).\dfrac{\sqrt{x}-5}{\sqrt{x}+1}\)
\(C=\dfrac{5+\sqrt{x}}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}.\dfrac{\sqrt{x}-5}{\sqrt{x}+1}\)
\(C=\dfrac{1}{\sqrt{x}+1}\)
Rút gọn biểu thức sau
P=\(\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+1:\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}+\dfrac{2\sqrt{x+7}}{4-x}\right)\)
giải chi tiết hộ mình vs ạ !!!
\(P=\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+1:\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}-\dfrac{2\sqrt{x}+7}{x-4}\right)\)
\(=\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+1:\left(\dfrac{x+2\sqrt{x}-x+\sqrt{x}+2-2\sqrt{x}-7}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right)\)
\(=\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}-5}\)
\(=\dfrac{-x+8\sqrt{x}-15+\left(x-4\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-5\right)}\)
\(=\dfrac{-x+8\sqrt{x}-15+x\sqrt{x}-2x-4\sqrt{x}+8}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-5\right)}\)
\(=\dfrac{x\sqrt{x}-3x+4\sqrt{x}-7}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-5\right)}\)
\(ĐK:x\ge0;x\ne4\\ P=\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+1:\dfrac{x+2\sqrt{x}-x+\sqrt{x}+2-2\sqrt{x}-7}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ P=\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}-5}\\ P=\dfrac{\left(3-\sqrt{x}\right)\left(\sqrt{x}-5\right)+\left(x-4\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-5\right)}\\ P=\dfrac{8\sqrt{x}-15-x+x\sqrt{x}-2x-4\sqrt{x}+8}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-5\right)}\\ P=\dfrac{x\sqrt{x}-3x+4\sqrt{x}-7}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-5\right)}\)
Cho biểu thức P= \(\dfrac{\sqrt{x}}{\sqrt{x}-1}\)+\(\dfrac{3}{\sqrt{x}+1}\)-\(\dfrac{6\sqrt{x}-4}{x-1}\) Với x >=0 , x khác 1
a) Rút gọn biểu thức ( câu này mình rút gọn = \(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\))
b) Tìm giá trị của x để P =-1
c) Tìm x thuộc z để P thuộc z
d) Só ánh P với 1
e)Tìm giá trị nhỏ nhất của P
mình đag cần gấp ạ!
a) \(P=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
b) \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=-1\)
\(\Leftrightarrow-\sqrt{x}-1=\sqrt{x}-1\Leftrightarrow2\sqrt{x}=0\Leftrightarrow x=0\left(tm\right)\)
c) \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\in Z\)
\(\Rightarrow\sqrt{x}+1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
Kết hợp đk:
\(\Rightarrow x\in\left\{0\right\}\)
d) \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=\dfrac{\left(\sqrt{x}+1\right)-2}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}< 1\)
\(a,P=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ P=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\\ b,P=-1\Leftrightarrow\sqrt{x}-1=-\sqrt{x}-1\\ \Leftrightarrow2\sqrt{x}=0\Leftrightarrow x=0\left(tm\right)\\ c,P\in Z\Leftrightarrow\dfrac{\sqrt{x}+1-2}{\sqrt{x}+1}\in Z\Leftrightarrow1-\dfrac{2}{\sqrt{x}+1}\in Z\\ \Leftrightarrow2⋮\sqrt{x}+1\\ \Leftrightarrow\sqrt{x}+1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\\ \Leftrightarrow\sqrt{x}+1\in\left\{1;2\right\}\left(\sqrt{x}+1\ge1\right)\\ \Leftrightarrow\sqrt{x}\in\left\{0;1\right\}\\ \Leftrightarrow x\in\left\{0;1\right\}\)
\(d,P=\dfrac{\sqrt{x}+1-2}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\)
Có \(\dfrac{2}{\sqrt{x}+1}>0\left(2>0;\sqrt{x}+1>0\right)\Leftrightarrow1-\dfrac{2}{\sqrt{x}+1}< 1\Leftrightarrow P< 1\)
\(e,P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\)
Có \(\sqrt{x}+1\ge1\Leftrightarrow\dfrac{2}{\sqrt{x}+1}\le2\Leftrightarrow1-\dfrac{2}{\sqrt{x}+1}\ge1-2=-1\)
\(P_{min}=-1\Leftrightarrow x=0\)
Mọi người ơi, giải giúp mình bài này với
Rút gọn biểu thức:
\(\left(\sqrt{x+2\sqrt{x-2}-1}\right)\left(\sqrt{x-1}-1\right):\left(\sqrt{x}-\sqrt{3}\right)\left(x\ge2,\right)x\ne3\)
Mình đang cần gấp, nhanh lên chút nhé
giải hộ mk bài này vs: Rút gọn biểu thức :\(C=\left(\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\frac{\sqrt{x}-2}{x-1}\right)\cdot\frac{\sqrt{x}+1}{\sqrt{x}}\)
C=\(\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\frac{\sqrt{x}-1}{\left(\sqrt{x}+1\right).\left(\sqrt{x}-1\right)}\right).\frac{\sqrt{x}+1}{\sqrt{x}}\)
C=\(\frac{\left(\sqrt{x}+2\right).\left(x-1\right)-\left(\sqrt{x}-1\right).\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2.\left(x-1\right)}.\frac{\sqrt{x}+1}{\sqrt{x}}\)
C=\(\frac{x\sqrt{x}-\sqrt{x}+2x-2-\left(x-1\right)}{\left(\sqrt{x}+1\right)^2.\left(x-1\right)}.\frac{\sqrt{x}+1}{\sqrt{x}}\)
C=\(\frac{x-1+x\sqrt{x}-\sqrt{x}}{\left(\sqrt{x}+1\right)^2.\left(x-1\right)}.\frac{\sqrt{x}+1}{\sqrt{x}}\)
C=\(\frac{\left(x-1\right).\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2.\left(x-1\right)}.\frac{\sqrt{x}+1}{\sqrt{x}}\)
C=\(\frac{1}{\sqrt{x}}=\frac{\sqrt{x}}{x}\)
rút gọn biểu thức sau
C=\(\left(\dfrac{3}{x-1}+\dfrac{1}{\sqrt{x}+1}\right):\dfrac{1}{\sqrt{x}+1}\)
giải chi tiết hộ em vs ạ !!!
\(C=\left(\dfrac{3}{x-1}+\dfrac{1}{\sqrt{x}+1}\right):\dfrac{1}{\sqrt{x}+1}\)
\(=\dfrac{3+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{1}\)
\(=\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\)
Mng giúp mình vs ạ rút gọn bth này nha:
P=\(\dfrac{2x+2}{\sqrt{x}}+\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x+1}}{x+\sqrt{x}}\)
\(P=\dfrac{2x+2+x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}\)
\(=\dfrac{2x+2\sqrt{x}+2}{\sqrt{x}}\)