Những câu hỏi liên quan
LH
Xem chi tiết
SI
18 tháng 2 2021 lúc 14:25

Ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\)

\(\Leftrightarrow\)\(\dfrac{a}{b}+1=\dfrac{c}{d}+1\)

\(\Leftrightarrow\)\(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)(đpcm)

Bình luận (0)
HP
18 tháng 2 2021 lúc 14:45

Đặt a/b=c/d=K

=>a=b.K ; c=d.K

Thay a=b.K ; c=d.K vào biểu thức ta có:

(a+b)/b=(b.K+b)/b=b.(K+1)/b=K+1          (1)

(c+d)/d=(d.K+d)/d=d(K+1)/d=K+1           (2)

Từ (1) và (2)=>Với a/b=c/d thì (a+b)/b=(c+d)/d

Bình luận (0)
HA
Xem chi tiết
PC
24 tháng 1 2016 lúc 12:54

http://olm.vn/hoi-dap/question/103481.html

Bình luận (0)
TB
Xem chi tiết
37
Xem chi tiết
H24
26 tháng 1 2022 lúc 10:15

:)

- Ta có: \(\dfrac{a}{b}< \dfrac{c}{d}\) (gt)

=>\(ad< bc\) 

=>\(ad+ab< bc+ab\)

=>\(a\left(b+d\right)< b\left(a+c\right)\)

=>\(\dfrac{a}{b}< \dfrac{a+c}{b+d}\) (1)

- Ta có: \(\dfrac{c}{d}>\dfrac{a}{b}\) (gt)

=>\(bc>ad\)

=>\(bc+cd>ad+cd\)

=>\(c\left(b+d\right)>d\left(a+c\right)\)

=>\(\dfrac{c}{d}>\dfrac{a+c}{b+d}\) (2)

- Từ (1) và (2) suy ra: \(\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)

Bình luận (1)
HC
Xem chi tiết
LL
15 tháng 1 2019 lúc 17:33

Lời giải:

Có 44 số a,b,c,da,b,c,d và 33 số dư có thể xảy ra khi chia một số cho 33 là 0,1,20,1,2

Do đó áp dụng nguyên lý Dirichlet tồn tại ít nhất [43]+1=2[43]+1=2 số có cùng số dư khi chia cho 3

Không mất tổng quát giả sử đó là a,b⇒a−b⋮3a,b⇒a−b⋮3

⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮3⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮3

Mặt khác:

Trong 4 số a,b,c,da,b,c,d

Giả sử tồn tại hai số có cùng số dư khi chia cho 44 là a,ba,b

⇒a−b⋮4⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮4⇒a−b⋮4⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮4

Nếu a,b,c,da,b,c,d không có số nào có cùng số dư khi chia cho 4. Khi đó giả sử a,b,c,da,b,c,d có số dư khi chia cho 44 lần lượt là 0,1,2,30,1,2,3

⇒c−a⋮2;d−b⋮2⇒c−a⋮2;d−b⋮2

⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮4⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮4

Như vậy, tích đã cho vừa chia hết cho 3 vừa chia hết cho 4. Do đó no cũng chia hết cho 12

Bình luận (0)
NH
15 tháng 1 2019 lúc 20:12

Cho 4 số nguyên phân biệt a,b,c,d. Chứng minh rằng : (a-b)(a-c)(a-d)(b-c)(b-d)(c-d) chia hết cho 12

 Giải

Không mất tổng quát giả sử đó là a,b⇒a−b⋮3

⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮3

Mặt khác:

Trong 4 số a,b,c,d

Giả sử tồn tại hai số có cùng số dư khi chia cho 4 là a,b

⇒a−b⋮4⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮4

Nếu a,b,c,d không có số nào có cùng số dư khi chia cho 4. Khi đó giả sử a,b,c,d có số dư khi chia cho 4 lần lượt là 0,1,2,3

⇒c−a⋮2;d−b⋮2

⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮4

Như vậy, tích đã cho vừa chia hết cho 3 vừa chia hết cho 4. Do đó no cũng chia hết cho 12

Ta có đpcm,

Bình luận (0)
MY
Xem chi tiết
NH
Xem chi tiết
AH
19 tháng 10 2024 lúc 10:33

Bạn xem lại đề nhé. 

Bình luận (0)
VM
Xem chi tiết
TM
Xem chi tiết
LV
4 tháng 5 2020 lúc 9:14

đề em viết chưa đủ dữ kiện

Bình luận (0)
 Khách vãng lai đã xóa