Những câu hỏi liên quan
HN
Xem chi tiết
NT
13 tháng 2 2022 lúc 15:42

b: \(BH=\dfrac{5\sqrt{3}}{3}\left(cm\right)\)

a: Đề sai rồi bạn

Bình luận (0)
NT
13 tháng 2 2022 lúc 15:45

a.=> BC = BH + CH = 1 + 3 = 4 cm

áp dụng định lý pitago vào tam giác vuông AHB

\(AB^2=HB^2+AH^2\)

\(AB=\sqrt{1^2+2^2}=\sqrt{5}cm\)

áp dụng định lí pitago vào tam giác vuông AHC

\(AC^2=AH^2+HC^2\)

\(AC=\sqrt{2^2+3^2}=\sqrt{13}cm\)

Bình luận (0)
NA
Xem chi tiết
NT
23 tháng 1 2022 lúc 11:48

a, Theo định lí Pytago tam giác ABH vuông tại H

\(AB=\sqrt{BH^2+AH^2}=\sqrt{5}cm\)

Theo định lí Pytago tam giác AHC vuông tại H

\(AC=\sqrt{AH^2+HC^2}=\sqrt{4+9}=\sqrt{13}\)cm 

-> BC = HB + HC = 4 cm 

b, Ta có tam giacs ABC đều mà BH là đường cao hay BH đồng thời là đường trung tuyến 

=> AH = AC/2 = 5/2 

Theo định lí Pytago tam giác ABH vuông tại H

\(BH=\sqrt{AB^2-AH^2}=\dfrac{5\sqrt{3}}{2}cm\)

Bình luận (0)
DH
Xem chi tiết
LM
7 tháng 1 2018 lúc 12:12

Vì tam giác ABC đều => AB = AC = BC = 5cm

Xét tam giác ABC đều có BH là đường cao => BH đồng thời là đường trung tuyến 

=> H là trung điểm AC => AH = 1/2 AC = 1/2 . 5 = 2,5 (cm)

Xét tam giác ABH vuông tại H có: \(AH^2+BH^2=AB^2\)(định lý Pytago)

                                               => \(2,5^2+BH^2=5^2\)

                                             <=>  6,25 +  BH^2 = 25

                                             <=> BH^2 = 18,75

 Vì BH > 0 => BH = \(\sqrt{18,75}\approx4,33\)

 Vậy BH \(\approx4,33\)

Bình luận (0)
TP
Xem chi tiết
NT
29 tháng 6 2023 lúc 22:20

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

b: ΔAHB=ΔAHC

=>góc BAH=góc CAH

=>AH là phân giác của góc BAC

c: BH=CH=3cm

AH=căn 5^2-3^2=4cm

Bình luận (0)
YS
Xem chi tiết
VM
23 tháng 1 2017 lúc 17:35

Bài 1: (bạn tự vẽ hình vì hình cũng dễ)

Ta có: AB = AH + BH = 1 + 4 = 5 (cm)

Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)

Xét tam giác BCH vuông tại H có:

  \(HB^2+CH^2=BC^2\left(pytago\right)\)

  \(4^2+CH^2=5^2\)

  \(16+CH^2=25\)

\(\Rightarrow CH^2=25-16=9\)

\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)

Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé

Bình luận (0)
VM
23 tháng 1 2017 lúc 17:38

Bài 2: Sử dụng pytago với tam giác ABH => AH

Sử dụng pytago với ACH => AC

Bình luận (0)
YN
Xem chi tiết
NT
8 tháng 1 2021 lúc 20:01

Câu 1: 

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{1}{9^2}+\dfrac{1}{12^2}=\dfrac{1}{81}+\dfrac{1}{144}=\dfrac{25}{1296}\)

\(\Leftrightarrow AH^2=\dfrac{1296}{25}\)

hay \(AH=\dfrac{14}{5}=4.8cm\)

Vậy: AH=4,8cm

Câu 2: 

Ta có: BC=BH+CH(H nằm giữa B và C)

hay BC=5+6=11(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AB^2=BH\cdot BC\)

\(\Leftrightarrow AB^2=5\cdot11=55\)

hay \(AB=\sqrt{55}cm\)

Vậy: \(AB=\sqrt{55}cm\)

Câu 4:

Không có hàm số nào không phải là hàm số bậc nhất

Bình luận (0)
PB
Xem chi tiết
CT
27 tháng 2 2018 lúc 12:07

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có: A B 2 + A C 2 = 5 2 + 12 2  = 25 + 144 = 169 = 13 2 = B C 2

Suy ra, tam giác ABC vuông tại A

Áp dụng hệ thức lượng trong tam giác vuông ABC ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Bình luận (0)
DC
Xem chi tiết
LT
25 tháng 10 2017 lúc 18:13

mình chỉ biết bài 3 thôi. hai bài kia cx làm được nhưng ngại trình bày 

A B C 4 9

Ta có : BC = BH +HC = 4 + 9 = 13 (cm)

Theo hệ thức lượng trong tam giác vuông ta có:

- AC2 = BC * HC 

AC2 = 13 * 9 = 117 

AC = \(3\sqrt{13}\)(cm)

- AB2 =BH * BC 

AB2 = 13 * 4 = 52 

AB = \(2\sqrt{13}\)(CM)

Bình luận (0)
LT
25 tháng 10 2017 lúc 18:06

trong sbt có giải ý. dựa vào mà lm

Bình luận (0)
LC
Xem chi tiết
H24
17 tháng 2 2020 lúc 20:41

a) Xét tam giác ABH vuông tại H. Áp dụng định lý Pi-ta-go trong tam giác vuông ta có:

BH2+AH2=AB2

<=> 1+4=5(cm)

<=> AB=\(\sqrt{5}\)cm

Xét tam giác AHC vuông tại H. Áp dụng định lí Pi-ta-go ta có:

HC2+AH2=AC2

<=> 9+4=13(cm)

<=> AC=\(\sqrt{13}\left(cm\right)\)

Xét BC=BH+HC=1+3=4(cm)

b) Áp dụng công thức tính đường cao trong tam giác đều, ta có:

BH=\(5\cdot\frac{\sqrt{3}}{2}=\frac{5\sqrt{3}}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa