Những câu hỏi liên quan
GB
Xem chi tiết
H24
Xem chi tiết
NN
25 tháng 11 2016 lúc 22:49

a) vì tam giác MNPcó MN=MP=> tam giác MNP cân tại M mà MI là đường trung tuyến nên MI cũng là đường phân giác

xét tam giác MNI=tam giác MPI (cgc)

b) Theo câu a tam giác MNP= tam giác MPI =>góc MIN = góc MIP

Ta lại có MIN+MIP=180 độ=>MIN=MIP=90 độ=>MI vuông góc với NP

Bình luận (0)
NN
25 tháng 11 2016 lúc 22:56

a) VÌ TAM GIÁC MNP CÓ MN=MP=>TAM GIÁC MNP CÂN TẠI M=>ĐƯỜNG TRUNG TUYẾN MI CŨNG LÀ ĐƯỜNG PHÂN GIÁC

XÉT TAM GIÁC MNI VÀ TAM GIÁC MPI CÓ

MN=MP

NMI=PMI

MI CHUNG

=> TAM GIÁC MNI = TAM GIÁC MPI (CGC)

b) THEO CÂU a:TAM GIÁC MNI=TAM GIÁC MPI=>GÓC MIN=GÓC MIP

MÀ MIN+MIP=180độ=>MIN=MIP=90 độ=>MI vuông góc với NP

Bình luận (0)
TN
25 tháng 12 2020 lúc 15:05

cho tam giác MNP vuông tại M có MP=MN Gọi I là trung điểm của NP

a) C/m:Tam giác MIP=tam giác MIN

b) C/m:MI vuông góc NP

c)Từ P vẽ đường vuông góc với NP cắt MN tại F. C/m:FP//MI và tính số đo góc MFP

:> mình đang cần gấp

Bình luận (0)
 Khách vãng lai đã xóa
NC
Xem chi tiết
ND
Xem chi tiết
LT
12 tháng 5 2017 lúc 21:50

a) tam giác MNP có MN=MP(GT) suy ra tam giác MNP cân tại M (ĐỊNH nghĩa tam giác cân)

b) xét tam giác MNI và MPI có 

    MI chung 

    MN=MP(GT)

    IN=IP(MI là trung tuyến nên I là trung điểm NP)

SUY ra tam giác MNI=MPI(C-C-C)

c) Vì tam giác MNP cân tại M(cmt)màMI là đường trung tuyến nên MI đồng thời cũng là đường cao đường trung trực hay MI là đường trung trực của NP (tính chất tam giác cân)

d)Vì MI là đường cao tam giác MNP(cmt) suy ra MI vuông góc với NP suy ra tam giác MNI vuông tại I

   Vì MI là đường trung tuyến nên I là trung điểm NP suy ra NI=1/2NP

    Mà NP=12cm(gt) suy ra NI=12x1/2=6cm

   xét tam giác vuông MNI có

    NM2=NI2+MI2(ĐỊNH LÍ Py-ta-go)

   Suy ra MI2=NM2-NI2

 mà NM=10CM(gt) NI=6CM(cmt)

suy ra MI2=102-62=100-36=64=căn bậc 2 của 64=8

mà MI>0 Suy ra MI=8CM (đpcm)

ế) mik gửi cho bn bằng này nhé 

Bình luận (0)
HB
12 tháng 5 2017 lúc 21:55

a) Vì MN=MP => tam giác MNP là tam giác cân tại M.

b)Xét tam giác MIN và tam giác MIP có:

           MN=MP (vì tam giác MNP cân)

           \(\widehat{MNP}=\widehat{MPI}\)(tam giác MNP cân)

            NI=PI(vì MI là trung tuyến)

=> tam giác MIN=tam giác MIP(c.g.c)

c) Ta có: MN=MP

              IN=IP

=> M,I thuộc trung trực của NP

Hay MI là đường trung trực của NP

d) IN=IP=NP/2=12/2=6(cm)

Xét tam giác MIN có góc MIN =90*

 =>  MN^2=MI^2 + NI^2

 =>  MI^2=MN^2-NI^2

 =>  MN^2 = 10^2 - 6^2

 =>  MN = 8

e) Tam giác HEI có goc IHE=90*

 => góc HEI + góc HIE= 90*

Mà góc HIE = góc MEF/2

 => góc MEF/2 + góc HEI = 90*   (1)

Mà góc MEF + góc HEI + góc IEF = 180*

 => góc MEF/2 + góc IEF = 90*     (2)

  Từ (1) và (2)   =>  góc HEI = góc IEF

Hay EI là tia phân giác của góc HEF

Bình luận (0)
ND
12 tháng 5 2017 lúc 22:17

cảm ơn hoàng hàn nhật băng nhiều, mk mới tham gia nên ko biết mỗi câu hỏi chỉ dc k đúng 1 lần xin lỗi bạn nha

Bình luận (0)
HD
Xem chi tiết
NT
3 tháng 1 2024 lúc 12:42

a: Xét ΔMNP có MN=MP

nên ΔMNP cân tại M

=>\(\widehat{N}=\widehat{P}\)

b: Xét ΔMNI và ΔMPI có

MN=MP

NI=PI

MI chung

Do đó: ΔMNI=ΔMPI

=>\(\widehat{NMI}=\widehat{PMI}\)

=>MI là phân giác của góc NMP

c: Ta có: MN=MP

=>M nằm trên đường trung trực của NP(1)

ta có: IN=IP

=>I nằm trên đường trung trực của NP(2)

Từ (1) và (2) suy ra MI là đường trung trực của NP

Bình luận (0)
H24
Xem chi tiết
TT
10 tháng 12 2021 lúc 16:48

a) Xét tam giác MNP có: MN = MP (gt).

=> Tam giác MNP cân tại M.

=> Góc N = Góc P (Tính chất tam giác cân).

b) Xét tam giác MNP cân tại M:

MI là trung tuyến (I là trung điểm của cạnh NP).

=> MI là phân giác của góc NMP (Tính chất các đường trong tam giác).

c) Xét tam giác MNP cân tại M:

MI là trung tuyến (I là trung điểm của cạnh NP).

=> MI là đường cao (Tính chất các đường trong tam giác).

=> MI vuông góc với NP (đpcm).

Bình luận (0)
HP
Xem chi tiết
HN
Xem chi tiết
HH
Xem chi tiết
NT
17 tháng 10 2021 lúc 23:35

a: Xét ΔMNP có MN=MP

nên ΔMNP cân tại M

hay \(\widehat{N}=\widehat{P}\)

Bình luận (1)